Limits...
The complete design in the composite face paradigm: role of response bias, target certainty, and feedback.

Meinhardt G, Meinhardt-Injac B, Persike M - Front Hum Neurosci (2014)

Bottom Line: Some years ago an improved design (the "complete design") was proposed to assess the composite face effect in terms of a congruency effect, defined as the performance difference for congruent and incongruent target to no-target relationships (Cheung et al., 2008).In a recent paper Rossion (2013) questioned whether the congruency effect was a valid hallmark of perceptual integration, because it may contain confounds with face-unspecific interference effects.We conclude that the congruency effect, when complemented by an evaluation of response bias, is a valid hallmark of feature integration that allows one to separate faces from non-face objects.

View Article: PubMed Central - PubMed

Affiliation: Department of Psychology, Johannes Gutenberg University Mainz Mainz, Germany.

ABSTRACT
Some years ago an improved design (the "complete design") was proposed to assess the composite face effect in terms of a congruency effect, defined as the performance difference for congruent and incongruent target to no-target relationships (Cheung et al., 2008). In a recent paper Rossion (2013) questioned whether the congruency effect was a valid hallmark of perceptual integration, because it may contain confounds with face-unspecific interference effects. Here we argue that the complete design is well-balanced and allows one to separate face-specific from face-unspecific effects. We used the complete design for a same/different composite stimulus matching task with face and non-face objects (watches). Subjects performed the task with and without trial-by-trial feedback, and with low and high certainty about the target half. Results showed large congruency effects for faces, particularly when subjects were informed late in the trial about which face halves had to be matched. Analysis of response bias revealed that subjects preferred the "different" response in incongruent trials, which is expected when upper and lower face halves are integrated perceptually at the encoding stage. The results pattern was observed in the absence of feedback, while providing feedback generally attenuated the congruency effect, and led to an avoidance of response bias. For watches no or marginal congruency effects and a moderate global "same" bias were observed. We conclude that the congruency effect, when complemented by an evaluation of response bias, is a valid hallmark of feature integration that allows one to separate faces from non-face objects.

No MeSH data available.


Related in: MedlinePlus

Examples of a single trial for the cue 1st (upper row) and the cue 2nd (lower row) condition. The upper row shows a same trial in congruent condition with upper target half, the lower row a different trial in incongruent condition with lower target half.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4215786&req=5

Figure 4: Examples of a single trial for the cue 1st (upper row) and the cue 2nd (lower row) condition. The upper row shows a same trial in congruent condition with upper target half, the lower row a different trial in incongruent condition with lower target half.

Mentions: A same/different forced choice matching task was used. Subject were informed that face pairs could differ in the cued and non-cued halves and that object matching was to be done upon just the cued halves. The temporal order of events in a trial sequence was: fixation mark (750 ms)—blank (300 ms—study face stimulus (800 ms)—mask (400 ms—blank (800 ms—test face stimulus (433 ms)—mask (400 ms)—blank frame until response (see Figure 4). The allocation of participants to the feedback and the no-feedback group was random. Subjects were made familiar with the task by going through randomly selected probe trials to ensure that the instructions were understood and could be put into practice. All subjects completed two cue conditions. In the “cue 1st” condition a rectangular bracket marking the target face half was shown simultaneously with the study face, and remained until the test face was masked. In the “cue 2nd” condition the cue presentation began with the mask of the study face. A trial was deemed congruent (CC) when the non-cued half of the face was different in “different” trials and same in “same” trials, and it was considered incongruent (IC) when the non-cued half was same in “different” trials and different in “same” trials.


The complete design in the composite face paradigm: role of response bias, target certainty, and feedback.

Meinhardt G, Meinhardt-Injac B, Persike M - Front Hum Neurosci (2014)

Examples of a single trial for the cue 1st (upper row) and the cue 2nd (lower row) condition. The upper row shows a same trial in congruent condition with upper target half, the lower row a different trial in incongruent condition with lower target half.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4215786&req=5

Figure 4: Examples of a single trial for the cue 1st (upper row) and the cue 2nd (lower row) condition. The upper row shows a same trial in congruent condition with upper target half, the lower row a different trial in incongruent condition with lower target half.
Mentions: A same/different forced choice matching task was used. Subject were informed that face pairs could differ in the cued and non-cued halves and that object matching was to be done upon just the cued halves. The temporal order of events in a trial sequence was: fixation mark (750 ms)—blank (300 ms—study face stimulus (800 ms)—mask (400 ms—blank (800 ms—test face stimulus (433 ms)—mask (400 ms)—blank frame until response (see Figure 4). The allocation of participants to the feedback and the no-feedback group was random. Subjects were made familiar with the task by going through randomly selected probe trials to ensure that the instructions were understood and could be put into practice. All subjects completed two cue conditions. In the “cue 1st” condition a rectangular bracket marking the target face half was shown simultaneously with the study face, and remained until the test face was masked. In the “cue 2nd” condition the cue presentation began with the mask of the study face. A trial was deemed congruent (CC) when the non-cued half of the face was different in “different” trials and same in “same” trials, and it was considered incongruent (IC) when the non-cued half was same in “different” trials and different in “same” trials.

Bottom Line: Some years ago an improved design (the "complete design") was proposed to assess the composite face effect in terms of a congruency effect, defined as the performance difference for congruent and incongruent target to no-target relationships (Cheung et al., 2008).In a recent paper Rossion (2013) questioned whether the congruency effect was a valid hallmark of perceptual integration, because it may contain confounds with face-unspecific interference effects.We conclude that the congruency effect, when complemented by an evaluation of response bias, is a valid hallmark of feature integration that allows one to separate faces from non-face objects.

View Article: PubMed Central - PubMed

Affiliation: Department of Psychology, Johannes Gutenberg University Mainz Mainz, Germany.

ABSTRACT
Some years ago an improved design (the "complete design") was proposed to assess the composite face effect in terms of a congruency effect, defined as the performance difference for congruent and incongruent target to no-target relationships (Cheung et al., 2008). In a recent paper Rossion (2013) questioned whether the congruency effect was a valid hallmark of perceptual integration, because it may contain confounds with face-unspecific interference effects. Here we argue that the complete design is well-balanced and allows one to separate face-specific from face-unspecific effects. We used the complete design for a same/different composite stimulus matching task with face and non-face objects (watches). Subjects performed the task with and without trial-by-trial feedback, and with low and high certainty about the target half. Results showed large congruency effects for faces, particularly when subjects were informed late in the trial about which face halves had to be matched. Analysis of response bias revealed that subjects preferred the "different" response in incongruent trials, which is expected when upper and lower face halves are integrated perceptually at the encoding stage. The results pattern was observed in the absence of feedback, while providing feedback generally attenuated the congruency effect, and led to an avoidance of response bias. For watches no or marginal congruency effects and a moderate global "same" bias were observed. We conclude that the congruency effect, when complemented by an evaluation of response bias, is a valid hallmark of feature integration that allows one to separate faces from non-face objects.

No MeSH data available.


Related in: MedlinePlus