Limits...
Secretomes of apoptotic mononuclear cells ameliorate neurological damage in rats with focal ischemia.

Altmann P, Mildner M, Haider T, Traxler D, Beer L, Ristl R, Golabi B, Gabriel C, Leutmezer F, Ankersmit HJ - F1000Res (2014)

Bottom Line: Administration of rat as well as human apoptotic MNC-secretomes significantly reduced ischemic lesion volumes by 36% and 37%, respectively.Co-incubation of human astrocytes, Schwann cells and neurons with hMNC (apo sec) resulted in activation of several signaling cascades associated with the regulation of cytoprotective gene products and enhanced neuronal sprouting in vitro.Analysis of neurotrophic factors in hMNC (apo sec) and rat plasma revealed high levels of brain derived neurotrophic factor (BDNF).

View Article: PubMed Central - PubMed

Affiliation: Department of Thoracic Surgery, Medical University of Vienna, Vienna, 1090, Austria ; Christian Doppler Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Vienna, 1090, Austria.

ABSTRACT
The pursuit of targeting multiple pathways in the ischemic cascade of cerebral stroke is a promising treatment option. We examined the regenerative potential of conditioned medium derived from rat and human apoptotic mononuclear cells (MNC), rMNC (apo sec) and hMNC (apo sec), in experimental stroke. We performed middle cerebral artery occlusion on Wistar rats and administered apoptotic MNC-secretomes intraperitoneally in two experimental settings. Ischemic lesion volumes were determined 48 hours after cerebral ischemia. Neurological evaluations were performed after 6, 24 and 48 hours. Immunoblots were conducted to analyze neuroprotective signal-transduction in human primary glia cells and neurons. Neuronal sprouting assays were performed and neurotrophic factors in both hMNC (apo sec) and rat plasma were quantified using ELISA. Administration of rat as well as human apoptotic MNC-secretomes significantly reduced ischemic lesion volumes by 36% and 37%, respectively. Neurological examinations revealed improvement after stroke in both treatment groups. Co-incubation of human astrocytes, Schwann cells and neurons with hMNC (apo sec) resulted in activation of several signaling cascades associated with the regulation of cytoprotective gene products and enhanced neuronal sprouting in vitro. Analysis of neurotrophic factors in hMNC (apo sec) and rat plasma revealed high levels of brain derived neurotrophic factor (BDNF). Our data indicate that apoptotic MNC-secretomes elicit neuroprotective effects on rats that have undergone ischemic stroke.

No MeSH data available.


Related in: MedlinePlus

Representative brain slices of rats subjected to MCAO.Brains were stained with a 2% solution of TTC forty-eight hours after MCAO. Animals received either treatment (in this representative scan: hMNCapo sec) or control medium, in this case, 40 minutes 24 hours after surgery. White areas indicate ischemic tissue while red areas stain for non-ischemic tissue. Animals treated with control medium (left image) had larger ischemic (=white) areas than animals treated with hMNCapo sec (right image).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4215751&req=5

f2: Representative brain slices of rats subjected to MCAO.Brains were stained with a 2% solution of TTC forty-eight hours after MCAO. Animals received either treatment (in this representative scan: hMNCapo sec) or control medium, in this case, 40 minutes 24 hours after surgery. White areas indicate ischemic tissue while red areas stain for non-ischemic tissue. Animals treated with control medium (left image) had larger ischemic (=white) areas than animals treated with hMNCapo sec (right image).

Mentions: In both experimental settings, animals were euthanized 48 hours after surgery with an intraperitoneal injection of 600 mg/kg Pentobarbital. Brains were harvested and cut into five 2 mm coronal slices using a brain matrix (Zivic Instruments, Pittsburgh, PA, USA) and razor blades (Zivic Instruments). In order to stain ischemic areas, brain slices were then incubated for 30 minutes at 37°C in a 2% solution of 2,3,5-triphenyltetrazolium chloride (TTC; CarlRoth, Karlsruhe, Germany) (Bedersonet al., 1986). Slices were digitalized using a commercially available photo scanner (Epson Perfection V330 Scanner;Figure 2). Lesion volumes were determined by a blinded investigator using ImageJ planimetry software (Version 1.6.0_10; Rasband, W.S., ImageJ, U.S. National Institutes of Health; Bethesda, MD, USA). Lesion volumes were calculated with respect to edema formation using the following formula: 100×(Volume of the contralateral hemisphere-Volume of the ipsilateral hemisphere)/(Volume of the contralateral hemisphere). Ipsi- and contralateral lesion volumes were calculated by multiplication of area with slice thickness summed for all sections (Swansonet al., 1990).


Secretomes of apoptotic mononuclear cells ameliorate neurological damage in rats with focal ischemia.

Altmann P, Mildner M, Haider T, Traxler D, Beer L, Ristl R, Golabi B, Gabriel C, Leutmezer F, Ankersmit HJ - F1000Res (2014)

Representative brain slices of rats subjected to MCAO.Brains were stained with a 2% solution of TTC forty-eight hours after MCAO. Animals received either treatment (in this representative scan: hMNCapo sec) or control medium, in this case, 40 minutes 24 hours after surgery. White areas indicate ischemic tissue while red areas stain for non-ischemic tissue. Animals treated with control medium (left image) had larger ischemic (=white) areas than animals treated with hMNCapo sec (right image).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4215751&req=5

f2: Representative brain slices of rats subjected to MCAO.Brains were stained with a 2% solution of TTC forty-eight hours after MCAO. Animals received either treatment (in this representative scan: hMNCapo sec) or control medium, in this case, 40 minutes 24 hours after surgery. White areas indicate ischemic tissue while red areas stain for non-ischemic tissue. Animals treated with control medium (left image) had larger ischemic (=white) areas than animals treated with hMNCapo sec (right image).
Mentions: In both experimental settings, animals were euthanized 48 hours after surgery with an intraperitoneal injection of 600 mg/kg Pentobarbital. Brains were harvested and cut into five 2 mm coronal slices using a brain matrix (Zivic Instruments, Pittsburgh, PA, USA) and razor blades (Zivic Instruments). In order to stain ischemic areas, brain slices were then incubated for 30 minutes at 37°C in a 2% solution of 2,3,5-triphenyltetrazolium chloride (TTC; CarlRoth, Karlsruhe, Germany) (Bedersonet al., 1986). Slices were digitalized using a commercially available photo scanner (Epson Perfection V330 Scanner;Figure 2). Lesion volumes were determined by a blinded investigator using ImageJ planimetry software (Version 1.6.0_10; Rasband, W.S., ImageJ, U.S. National Institutes of Health; Bethesda, MD, USA). Lesion volumes were calculated with respect to edema formation using the following formula: 100×(Volume of the contralateral hemisphere-Volume of the ipsilateral hemisphere)/(Volume of the contralateral hemisphere). Ipsi- and contralateral lesion volumes were calculated by multiplication of area with slice thickness summed for all sections (Swansonet al., 1990).

Bottom Line: Administration of rat as well as human apoptotic MNC-secretomes significantly reduced ischemic lesion volumes by 36% and 37%, respectively.Co-incubation of human astrocytes, Schwann cells and neurons with hMNC (apo sec) resulted in activation of several signaling cascades associated with the regulation of cytoprotective gene products and enhanced neuronal sprouting in vitro.Analysis of neurotrophic factors in hMNC (apo sec) and rat plasma revealed high levels of brain derived neurotrophic factor (BDNF).

View Article: PubMed Central - PubMed

Affiliation: Department of Thoracic Surgery, Medical University of Vienna, Vienna, 1090, Austria ; Christian Doppler Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Vienna, 1090, Austria.

ABSTRACT
The pursuit of targeting multiple pathways in the ischemic cascade of cerebral stroke is a promising treatment option. We examined the regenerative potential of conditioned medium derived from rat and human apoptotic mononuclear cells (MNC), rMNC (apo sec) and hMNC (apo sec), in experimental stroke. We performed middle cerebral artery occlusion on Wistar rats and administered apoptotic MNC-secretomes intraperitoneally in two experimental settings. Ischemic lesion volumes were determined 48 hours after cerebral ischemia. Neurological evaluations were performed after 6, 24 and 48 hours. Immunoblots were conducted to analyze neuroprotective signal-transduction in human primary glia cells and neurons. Neuronal sprouting assays were performed and neurotrophic factors in both hMNC (apo sec) and rat plasma were quantified using ELISA. Administration of rat as well as human apoptotic MNC-secretomes significantly reduced ischemic lesion volumes by 36% and 37%, respectively. Neurological examinations revealed improvement after stroke in both treatment groups. Co-incubation of human astrocytes, Schwann cells and neurons with hMNC (apo sec) resulted in activation of several signaling cascades associated with the regulation of cytoprotective gene products and enhanced neuronal sprouting in vitro. Analysis of neurotrophic factors in hMNC (apo sec) and rat plasma revealed high levels of brain derived neurotrophic factor (BDNF). Our data indicate that apoptotic MNC-secretomes elicit neuroprotective effects on rats that have undergone ischemic stroke.

No MeSH data available.


Related in: MedlinePlus