Limits...
Near-infrared low-level laser stimulation of telocytes from human myometrium.

Campeanu RA, Radu BM, Cretoiu SM, Banciu DD, Banciu A, Cretoiu D, Popescu LM - Lasers Med Sci (2014)

Bottom Line: Acute exposure (30 min) of TCs from pregnant myometrium to 1 μM mibefradil, a selective inhibitor of T-type calcium channels, determines a significant reduction in the LLLS TLE growth rate (5.7 ± 0.8 μm/min) compared to LLLS per se in same type of samples.In conclusion, TCs from pregnant myometrium are more susceptible of reacting to LLLS than those from nonpregnant myometrium.Therefore, some implications are emerging for low-level laser therapy (LLLT) in uterine regenerative medicine.

View Article: PubMed Central - PubMed

Affiliation: Department of Anatomy Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 050095, Bucharest, Romania.

ABSTRACT
Telocytes (TCs) are a brand-new cell type frequently observed in the interstitial space of many organs (see www.telocytes.com ). TCs are defined by very long (tens of micrometers) and slender prolongations named telopodes. At their level, dilations-called podoms (~300 nm), alternate with podomers (80-100 nm). TCs were identified in a myometrial interstitial cell culture based on morphological criteria and by CD34 and PDGF receptor alpha (PDGFRα) immunopositivity. However, the mechanism(s) of telopodes formation and/or elongation and ramification is not known. We report here the low-level laser stimulation (LLLS) using a 1,064-nm neodymium-doped yttrium aluminum garnet (Nd:YAG) laser (with an output power of 60 mW) of the telopodal lateral extension (TLE) growth in cell culture. LLLS of TCs determines a higher growth rate of TLE in pregnant myometrium primary cultures (10.3 ± 1.0 μm/min) compared to nonpregnant ones (6.6 ± 0.9 μm/min). Acute exposure (30 min) of TCs from pregnant myometrium to 1 μM mibefradil, a selective inhibitor of T-type calcium channels, determines a significant reduction in the LLLS TLE growth rate (5.7 ± 0.8 μm/min) compared to LLLS per se in same type of samples. Meanwhile, chronic exposure (24 h) completely abolishes the LLLS TLE growth in both nonpregnant and pregnant myometria. The initial direction of TLE growth was modified by LLLS, the angle of deviation being more accentuated in TCs from human pregnant myometrium than in TCs from nonpregnant myometrium. In conclusion, TCs from pregnant myometrium are more susceptible of reacting to LLLS than those from nonpregnant myometrium. Therefore, some implications are emerging for low-level laser therapy (LLLT) in uterine regenerative medicine.

Show MeSH

Related in: MedlinePlus

Mibefradil effect on TLE upon LLLS in pregnant myometrium (myometrial interstitial cell culture at fourth passage, day 3). a Untreated TCs exposed to LLLS were considered as control. The time course of LLLS effect in these images (a–c) is 36 s. We can observe how a TLE grows (yellow arrow). b Mibefradil (1 μM) was perfused for 30 min, and afterwards, TCs were re-exposed to LLLS. Comparison of the TLE growth rate reveals that in 1 min and 4 s, the length of TLE is approximately the same as that in control and that the angle of the deviation is slightly above 30°. Yellow arrows indicate the TLE subjected to LLLS. The black arrows indicate the direction of the TLE. Each red square evidences the region of interest for the LLLS effect. Scale bar = 10 μm
© Copyright Policy - OpenAccess
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4215113&req=5

Fig4: Mibefradil effect on TLE upon LLLS in pregnant myometrium (myometrial interstitial cell culture at fourth passage, day 3). a Untreated TCs exposed to LLLS were considered as control. The time course of LLLS effect in these images (a–c) is 36 s. We can observe how a TLE grows (yellow arrow). b Mibefradil (1 μM) was perfused for 30 min, and afterwards, TCs were re-exposed to LLLS. Comparison of the TLE growth rate reveals that in 1 min and 4 s, the length of TLE is approximately the same as that in control and that the angle of the deviation is slightly above 30°. Yellow arrows indicate the TLE subjected to LLLS. The black arrows indicate the direction of the TLE. Each red square evidences the region of interest for the LLLS effect. Scale bar = 10 μm

Mentions: Acute (30 min) and chronic (24 h) exposure to mibefradil was done, and the LLLS effect on TLE growth rate was measured. In pregnant myometrium, the LLLS effect was tested on TCs per se (control; Fig. 4a(a–c)) and on TCs exposed to mibefradil (1 μM; Fig. 4b(a–c)).Fig. 4


Near-infrared low-level laser stimulation of telocytes from human myometrium.

Campeanu RA, Radu BM, Cretoiu SM, Banciu DD, Banciu A, Cretoiu D, Popescu LM - Lasers Med Sci (2014)

Mibefradil effect on TLE upon LLLS in pregnant myometrium (myometrial interstitial cell culture at fourth passage, day 3). a Untreated TCs exposed to LLLS were considered as control. The time course of LLLS effect in these images (a–c) is 36 s. We can observe how a TLE grows (yellow arrow). b Mibefradil (1 μM) was perfused for 30 min, and afterwards, TCs were re-exposed to LLLS. Comparison of the TLE growth rate reveals that in 1 min and 4 s, the length of TLE is approximately the same as that in control and that the angle of the deviation is slightly above 30°. Yellow arrows indicate the TLE subjected to LLLS. The black arrows indicate the direction of the TLE. Each red square evidences the region of interest for the LLLS effect. Scale bar = 10 μm
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4215113&req=5

Fig4: Mibefradil effect on TLE upon LLLS in pregnant myometrium (myometrial interstitial cell culture at fourth passage, day 3). a Untreated TCs exposed to LLLS were considered as control. The time course of LLLS effect in these images (a–c) is 36 s. We can observe how a TLE grows (yellow arrow). b Mibefradil (1 μM) was perfused for 30 min, and afterwards, TCs were re-exposed to LLLS. Comparison of the TLE growth rate reveals that in 1 min and 4 s, the length of TLE is approximately the same as that in control and that the angle of the deviation is slightly above 30°. Yellow arrows indicate the TLE subjected to LLLS. The black arrows indicate the direction of the TLE. Each red square evidences the region of interest for the LLLS effect. Scale bar = 10 μm
Mentions: Acute (30 min) and chronic (24 h) exposure to mibefradil was done, and the LLLS effect on TLE growth rate was measured. In pregnant myometrium, the LLLS effect was tested on TCs per se (control; Fig. 4a(a–c)) and on TCs exposed to mibefradil (1 μM; Fig. 4b(a–c)).Fig. 4

Bottom Line: Acute exposure (30 min) of TCs from pregnant myometrium to 1 μM mibefradil, a selective inhibitor of T-type calcium channels, determines a significant reduction in the LLLS TLE growth rate (5.7 ± 0.8 μm/min) compared to LLLS per se in same type of samples.In conclusion, TCs from pregnant myometrium are more susceptible of reacting to LLLS than those from nonpregnant myometrium.Therefore, some implications are emerging for low-level laser therapy (LLLT) in uterine regenerative medicine.

View Article: PubMed Central - PubMed

Affiliation: Department of Anatomy Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 050095, Bucharest, Romania.

ABSTRACT
Telocytes (TCs) are a brand-new cell type frequently observed in the interstitial space of many organs (see www.telocytes.com ). TCs are defined by very long (tens of micrometers) and slender prolongations named telopodes. At their level, dilations-called podoms (~300 nm), alternate with podomers (80-100 nm). TCs were identified in a myometrial interstitial cell culture based on morphological criteria and by CD34 and PDGF receptor alpha (PDGFRα) immunopositivity. However, the mechanism(s) of telopodes formation and/or elongation and ramification is not known. We report here the low-level laser stimulation (LLLS) using a 1,064-nm neodymium-doped yttrium aluminum garnet (Nd:YAG) laser (with an output power of 60 mW) of the telopodal lateral extension (TLE) growth in cell culture. LLLS of TCs determines a higher growth rate of TLE in pregnant myometrium primary cultures (10.3 ± 1.0 μm/min) compared to nonpregnant ones (6.6 ± 0.9 μm/min). Acute exposure (30 min) of TCs from pregnant myometrium to 1 μM mibefradil, a selective inhibitor of T-type calcium channels, determines a significant reduction in the LLLS TLE growth rate (5.7 ± 0.8 μm/min) compared to LLLS per se in same type of samples. Meanwhile, chronic exposure (24 h) completely abolishes the LLLS TLE growth in both nonpregnant and pregnant myometria. The initial direction of TLE growth was modified by LLLS, the angle of deviation being more accentuated in TCs from human pregnant myometrium than in TCs from nonpregnant myometrium. In conclusion, TCs from pregnant myometrium are more susceptible of reacting to LLLS than those from nonpregnant myometrium. Therefore, some implications are emerging for low-level laser therapy (LLLT) in uterine regenerative medicine.

Show MeSH
Related in: MedlinePlus