Limits...
The microenvironment matters.

Weaver VM - Mol. Biol. Cell (2014)

Bottom Line: The physical and biochemical properties of the microenvironment regulate cell behavior and modulate tissue development and homeostasis.Likewise, the physical and interpersonal cues a trainee receives profoundly influence his or her scientific development, research perspective, and future success.My cell biology career has been greatly impacted by the flavor of the scientific environments I have trained within and the diverse research mentoring I have received.

View Article: PubMed Central - PubMed

Affiliation: Center for Bioengineering and Tissue Regeneration, Department of Surgery, and Departments of Anatomy and Bioengineering and Therapeutic Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, and UCSF Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143 Valerie.Weaver@ucsfmedctr.org.

Show MeSH

Related in: MedlinePlus

The importance of tissue context: ECM stiffness modulates mammary tissue morphogenesis. MEC growth and morphogenesis are regulated by matrix stiffness. Phase-contrast microscopy and confocal immunofluorescence images of nonmalignant MECs grown for 20 d on top of polyacrylamide gels of increasing stiffness (140–5000 Pa) conjugated with reconstituted basement membrane (rBM) and overlaid with rBM to generate a 3D rBM ECM microenvironment. Findings showed that increasing ECM stiffness enhanced MEC growth, as revealed by an increase in colony size and disrupted tissue organization indicated by aberrant tissue margins and invasive structures (phase-contrast images: top panels). ECM stiffness also progressively disrupted tissue morphology, as indicated by disrupted cell–cell localized β-catenin (green) and loss of basally localized (α6)β4 integrin (red) with nuclei costained with 4′,6-diamidino-2-phenylindole (DAPI; blue) (confocal images: lower panels). (Reproduced with modification and proper permission obtained from Elsevier as published in Paszek et al., 2005.)
© Copyright Policy - creative-commons
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4214768&req=5

Figure 3: The importance of tissue context: ECM stiffness modulates mammary tissue morphogenesis. MEC growth and morphogenesis are regulated by matrix stiffness. Phase-contrast microscopy and confocal immunofluorescence images of nonmalignant MECs grown for 20 d on top of polyacrylamide gels of increasing stiffness (140–5000 Pa) conjugated with reconstituted basement membrane (rBM) and overlaid with rBM to generate a 3D rBM ECM microenvironment. Findings showed that increasing ECM stiffness enhanced MEC growth, as revealed by an increase in colony size and disrupted tissue organization indicated by aberrant tissue margins and invasive structures (phase-contrast images: top panels). ECM stiffness also progressively disrupted tissue morphology, as indicated by disrupted cell–cell localized β-catenin (green) and loss of basally localized (α6)β4 integrin (red) with nuclei costained with 4′,6-diamidino-2-phenylindole (DAPI; blue) (confocal images: lower panels). (Reproduced with modification and proper permission obtained from Elsevier as published in Paszek et al., 2005.)


The microenvironment matters.

Weaver VM - Mol. Biol. Cell (2014)

The importance of tissue context: ECM stiffness modulates mammary tissue morphogenesis. MEC growth and morphogenesis are regulated by matrix stiffness. Phase-contrast microscopy and confocal immunofluorescence images of nonmalignant MECs grown for 20 d on top of polyacrylamide gels of increasing stiffness (140–5000 Pa) conjugated with reconstituted basement membrane (rBM) and overlaid with rBM to generate a 3D rBM ECM microenvironment. Findings showed that increasing ECM stiffness enhanced MEC growth, as revealed by an increase in colony size and disrupted tissue organization indicated by aberrant tissue margins and invasive structures (phase-contrast images: top panels). ECM stiffness also progressively disrupted tissue morphology, as indicated by disrupted cell–cell localized β-catenin (green) and loss of basally localized (α6)β4 integrin (red) with nuclei costained with 4′,6-diamidino-2-phenylindole (DAPI; blue) (confocal images: lower panels). (Reproduced with modification and proper permission obtained from Elsevier as published in Paszek et al., 2005.)
© Copyright Policy - creative-commons
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4214768&req=5

Figure 3: The importance of tissue context: ECM stiffness modulates mammary tissue morphogenesis. MEC growth and morphogenesis are regulated by matrix stiffness. Phase-contrast microscopy and confocal immunofluorescence images of nonmalignant MECs grown for 20 d on top of polyacrylamide gels of increasing stiffness (140–5000 Pa) conjugated with reconstituted basement membrane (rBM) and overlaid with rBM to generate a 3D rBM ECM microenvironment. Findings showed that increasing ECM stiffness enhanced MEC growth, as revealed by an increase in colony size and disrupted tissue organization indicated by aberrant tissue margins and invasive structures (phase-contrast images: top panels). ECM stiffness also progressively disrupted tissue morphology, as indicated by disrupted cell–cell localized β-catenin (green) and loss of basally localized (α6)β4 integrin (red) with nuclei costained with 4′,6-diamidino-2-phenylindole (DAPI; blue) (confocal images: lower panels). (Reproduced with modification and proper permission obtained from Elsevier as published in Paszek et al., 2005.)
Bottom Line: The physical and biochemical properties of the microenvironment regulate cell behavior and modulate tissue development and homeostasis.Likewise, the physical and interpersonal cues a trainee receives profoundly influence his or her scientific development, research perspective, and future success.My cell biology career has been greatly impacted by the flavor of the scientific environments I have trained within and the diverse research mentoring I have received.

View Article: PubMed Central - PubMed

Affiliation: Center for Bioengineering and Tissue Regeneration, Department of Surgery, and Departments of Anatomy and Bioengineering and Therapeutic Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, and UCSF Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143 Valerie.Weaver@ucsfmedctr.org.

Show MeSH
Related in: MedlinePlus