Limits...
Substrate selection for fundamental studies of electrocatalysts and photoelectrodes: inert potential windows in acidic, neutral, and basic electrolyte.

Benck JD, Pinaud BA, Gorlin Y, Jaramillo TF - PLoS ONE (2014)

Bottom Line: In order to help researchers with the substrate selection process, we employ a consistent experimental methodology to evaluate the electrochemical reactivity and stability of seven potential substrate materials for electrocatalyst and photoelectrode evaluation.We determine the inert potential window for each substrate/electrolyte combination and make recommendations about which materials may be most suitable for application under different experimental conditions.Furthermore, the testing methodology provides a framework for other researchers to evaluate and report the baseline activity of other substrates of interest to the broader community.

View Article: PubMed Central - PubMed

Affiliation: Department of Chemical Engineering, Stanford University, Stanford, California, United States of America.

ABSTRACT
The selection of an appropriate substrate is an important initial step for many studies of electrochemically active materials. In order to help researchers with the substrate selection process, we employ a consistent experimental methodology to evaluate the electrochemical reactivity and stability of seven potential substrate materials for electrocatalyst and photoelectrode evaluation. Using cyclic voltammetry with a progressively increased scan range, we characterize three transparent conducting oxides (indium tin oxide, fluorine-doped tin oxide, and aluminum-doped zinc oxide) and four opaque conductors (gold, stainless steel 304, glassy carbon, and highly oriented pyrolytic graphite) in three different electrolytes (sulfuric acid, sodium acetate, and sodium hydroxide). We determine the inert potential window for each substrate/electrolyte combination and make recommendations about which materials may be most suitable for application under different experimental conditions. Furthermore, the testing methodology provides a framework for other researchers to evaluate and report the baseline activity of other substrates of interest to the broader community.

Show MeSH
Electrochemical activity and inert potential range for aluminum-doped zinc oxide (AZO).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4214636&req=5

pone-0107942-g005: Electrochemical activity and inert potential range for aluminum-doped zinc oxide (AZO).

Mentions: The results of cycling in the other two electrolytes are shown in Figure 5. The AZO exhibits a similar pattern to both ITO and FTO in terms of redox features appearing in the cathodic region. The baseline is flat until a potential of −0.77 or −0.50 V vs. RHE in NaAc and NaOH, respectively, when a small reductive current begins. The oxidation feature (denoted a in Figure 5) then appears on the sweep to more positive potentials followed by the reduction feature (denoted b in Figure 5) on the subsequent sweep in the cathodic direction. These features are attributed to the cycling of the Zn oxidation state. Previous work has shown that Zn2+ is reduced to metallic Zn and subsequent oxidation/reduction occurs via various soluble zincate complex ions (e.g. Zn(OH)2, Zn(OH)3−, Zn(OH)42−) [27], [28].


Substrate selection for fundamental studies of electrocatalysts and photoelectrodes: inert potential windows in acidic, neutral, and basic electrolyte.

Benck JD, Pinaud BA, Gorlin Y, Jaramillo TF - PLoS ONE (2014)

Electrochemical activity and inert potential range for aluminum-doped zinc oxide (AZO).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4214636&req=5

pone-0107942-g005: Electrochemical activity and inert potential range for aluminum-doped zinc oxide (AZO).
Mentions: The results of cycling in the other two electrolytes are shown in Figure 5. The AZO exhibits a similar pattern to both ITO and FTO in terms of redox features appearing in the cathodic region. The baseline is flat until a potential of −0.77 or −0.50 V vs. RHE in NaAc and NaOH, respectively, when a small reductive current begins. The oxidation feature (denoted a in Figure 5) then appears on the sweep to more positive potentials followed by the reduction feature (denoted b in Figure 5) on the subsequent sweep in the cathodic direction. These features are attributed to the cycling of the Zn oxidation state. Previous work has shown that Zn2+ is reduced to metallic Zn and subsequent oxidation/reduction occurs via various soluble zincate complex ions (e.g. Zn(OH)2, Zn(OH)3−, Zn(OH)42−) [27], [28].

Bottom Line: In order to help researchers with the substrate selection process, we employ a consistent experimental methodology to evaluate the electrochemical reactivity and stability of seven potential substrate materials for electrocatalyst and photoelectrode evaluation.We determine the inert potential window for each substrate/electrolyte combination and make recommendations about which materials may be most suitable for application under different experimental conditions.Furthermore, the testing methodology provides a framework for other researchers to evaluate and report the baseline activity of other substrates of interest to the broader community.

View Article: PubMed Central - PubMed

Affiliation: Department of Chemical Engineering, Stanford University, Stanford, California, United States of America.

ABSTRACT
The selection of an appropriate substrate is an important initial step for many studies of electrochemically active materials. In order to help researchers with the substrate selection process, we employ a consistent experimental methodology to evaluate the electrochemical reactivity and stability of seven potential substrate materials for electrocatalyst and photoelectrode evaluation. Using cyclic voltammetry with a progressively increased scan range, we characterize three transparent conducting oxides (indium tin oxide, fluorine-doped tin oxide, and aluminum-doped zinc oxide) and four opaque conductors (gold, stainless steel 304, glassy carbon, and highly oriented pyrolytic graphite) in three different electrolytes (sulfuric acid, sodium acetate, and sodium hydroxide). We determine the inert potential window for each substrate/electrolyte combination and make recommendations about which materials may be most suitable for application under different experimental conditions. Furthermore, the testing methodology provides a framework for other researchers to evaluate and report the baseline activity of other substrates of interest to the broader community.

Show MeSH