Limits...
U-SPECT-BioFluo: an integrated radionuclide, bioluminescence, and fluorescence imaging platform.

van Oosterom MN, Kreuger R, Buckle T, Mahn WA, Bunschoten A, Josephson L, van Leeuwen FW, Beekman FJ - EJNMMI Res (2014)

Bottom Line: Next to an optimization in logistics and image fusion, this integration can help improve understanding of the optical imaging (OI) results.Both the phantom and in vivo mouse studies showed that superficial fluorescence signals could be imaged accurately.In our view, integration of these modalities helps to improve data interpretation of optical findings in relation to radionuclide images.

View Article: PubMed Central - HTML - PubMed

Affiliation: Radiation, Detection and Medical Imaging, Delft University of Technology, Mekelweg 15, Delft, 2629, JB, the Netherlands ; Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands.

ABSTRACT

Background: In vivo bioluminescence, fluorescence, and single-photon emission computed tomography (SPECT) imaging provide complementary information about biological processes. However, to date these signatures are evaluated separately on individual preclinical systems. In this paper, we introduce a fully integrated bioluminescence-fluorescence-SPECT platform. Next to an optimization in logistics and image fusion, this integration can help improve understanding of the optical imaging (OI) results.

Methods: An OI module was developed for a preclinical SPECT system (U-SPECT, MILabs, Utrecht, the Netherlands). The applicability of the module for bioluminescence and fluorescence imaging was evaluated in both a phantom and in an in vivo setting using mice implanted with a 4 T1-luc + tumor. A combination of a fluorescent dye and radioactive moiety was used to directly relate the optical images of the module to the SPECT findings. Bioluminescence imaging (BLI) was compared to the localization of the fluorescence signal in the tumors.

Results: Both the phantom and in vivo mouse studies showed that superficial fluorescence signals could be imaged accurately. The SPECT and bioluminescence images could be used to place the fluorescence findings in perspective, e.g. by showing tracer accumulation in non-target organs such as the liver and kidneys (SPECT) and giving a semi-quantitative read-out for tumor spread (bioluminescence).

Conclusions: We developed a fully integrated multimodal platform that provides complementary registered imaging of bioluminescent, fluorescent, and SPECT signatures in a single scanning session with a single dose of anesthesia. In our view, integration of these modalities helps to improve data interpretation of optical findings in relation to radionuclide images.

No MeSH data available.


Related in: MedlinePlus

Overview of the U-SPECT-BioFluo platform. (1) Animal bed. (2) Excitation filter box. (3) Camera. (4) Optical fiber bundle. (5) Dark box. (6) Light source. (7) Black ABS-plastic insert. (8) U-profile light lock. (9) U-SPECT. (10) Mirrors for excitation light. (11) Mirror directing light from the bed to the camera. (12) Lens hood and emission filter holder. (13) Camera lens.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4209452&req=5

Figure 1: Overview of the U-SPECT-BioFluo platform. (1) Animal bed. (2) Excitation filter box. (3) Camera. (4) Optical fiber bundle. (5) Dark box. (6) Light source. (7) Black ABS-plastic insert. (8) U-profile light lock. (9) U-SPECT. (10) Mirrors for excitation light. (11) Mirror directing light from the bed to the camera. (12) Lens hood and emission filter holder. (13) Camera lens.

Mentions: The prototype optical imaging (OI) module was fitted onto the U-SPECT-II [21],[22] installed at the LUMC (Leiden, the Netherlands) as is shown in Figure 1. The optical module consists of three main components: 1) a light tight ‘dark box’ ⑤, 2) a very sensitive CCD camera ③, and 3) a bright light source ⑥. Details about these components will be given in later paragraphs. The dark box was designed in such a way that when the module is in ‘open’ position, the handling of the animals in the bed of the U-SPECT is not hampered. When the module is ‘closed’, the CCD camera on top of the box is shielded from ambient light and can produce a total-body top-view bioluminescent image of the animal via a mirror ⑪. For photographic and fluorescence imaging, the animal is illuminated by the light source via two optic fibers ④ entering the box and small mirrors ⑩ reflecting the light onto the bed ①. Excitation and emission light filters, well adapted to the spectral profile of the fluorescent dye under study, can be added to the system.


U-SPECT-BioFluo: an integrated radionuclide, bioluminescence, and fluorescence imaging platform.

van Oosterom MN, Kreuger R, Buckle T, Mahn WA, Bunschoten A, Josephson L, van Leeuwen FW, Beekman FJ - EJNMMI Res (2014)

Overview of the U-SPECT-BioFluo platform. (1) Animal bed. (2) Excitation filter box. (3) Camera. (4) Optical fiber bundle. (5) Dark box. (6) Light source. (7) Black ABS-plastic insert. (8) U-profile light lock. (9) U-SPECT. (10) Mirrors for excitation light. (11) Mirror directing light from the bed to the camera. (12) Lens hood and emission filter holder. (13) Camera lens.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4209452&req=5

Figure 1: Overview of the U-SPECT-BioFluo platform. (1) Animal bed. (2) Excitation filter box. (3) Camera. (4) Optical fiber bundle. (5) Dark box. (6) Light source. (7) Black ABS-plastic insert. (8) U-profile light lock. (9) U-SPECT. (10) Mirrors for excitation light. (11) Mirror directing light from the bed to the camera. (12) Lens hood and emission filter holder. (13) Camera lens.
Mentions: The prototype optical imaging (OI) module was fitted onto the U-SPECT-II [21],[22] installed at the LUMC (Leiden, the Netherlands) as is shown in Figure 1. The optical module consists of three main components: 1) a light tight ‘dark box’ ⑤, 2) a very sensitive CCD camera ③, and 3) a bright light source ⑥. Details about these components will be given in later paragraphs. The dark box was designed in such a way that when the module is in ‘open’ position, the handling of the animals in the bed of the U-SPECT is not hampered. When the module is ‘closed’, the CCD camera on top of the box is shielded from ambient light and can produce a total-body top-view bioluminescent image of the animal via a mirror ⑪. For photographic and fluorescence imaging, the animal is illuminated by the light source via two optic fibers ④ entering the box and small mirrors ⑩ reflecting the light onto the bed ①. Excitation and emission light filters, well adapted to the spectral profile of the fluorescent dye under study, can be added to the system.

Bottom Line: Next to an optimization in logistics and image fusion, this integration can help improve understanding of the optical imaging (OI) results.Both the phantom and in vivo mouse studies showed that superficial fluorescence signals could be imaged accurately.In our view, integration of these modalities helps to improve data interpretation of optical findings in relation to radionuclide images.

View Article: PubMed Central - HTML - PubMed

Affiliation: Radiation, Detection and Medical Imaging, Delft University of Technology, Mekelweg 15, Delft, 2629, JB, the Netherlands ; Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands.

ABSTRACT

Background: In vivo bioluminescence, fluorescence, and single-photon emission computed tomography (SPECT) imaging provide complementary information about biological processes. However, to date these signatures are evaluated separately on individual preclinical systems. In this paper, we introduce a fully integrated bioluminescence-fluorescence-SPECT platform. Next to an optimization in logistics and image fusion, this integration can help improve understanding of the optical imaging (OI) results.

Methods: An OI module was developed for a preclinical SPECT system (U-SPECT, MILabs, Utrecht, the Netherlands). The applicability of the module for bioluminescence and fluorescence imaging was evaluated in both a phantom and in an in vivo setting using mice implanted with a 4 T1-luc + tumor. A combination of a fluorescent dye and radioactive moiety was used to directly relate the optical images of the module to the SPECT findings. Bioluminescence imaging (BLI) was compared to the localization of the fluorescence signal in the tumors.

Results: Both the phantom and in vivo mouse studies showed that superficial fluorescence signals could be imaged accurately. The SPECT and bioluminescence images could be used to place the fluorescence findings in perspective, e.g. by showing tracer accumulation in non-target organs such as the liver and kidneys (SPECT) and giving a semi-quantitative read-out for tumor spread (bioluminescence).

Conclusions: We developed a fully integrated multimodal platform that provides complementary registered imaging of bioluminescent, fluorescent, and SPECT signatures in a single scanning session with a single dose of anesthesia. In our view, integration of these modalities helps to improve data interpretation of optical findings in relation to radionuclide images.

No MeSH data available.


Related in: MedlinePlus