Limits...
Comparison of 99mTc-3PRGD2 integrin receptor imaging with 99mTc-MDP bone scan in diagnosis of bone metastasis in patients with lung cancer: a multicenter study.

Miao W, Zheng S, Dai H, Wang F, Jin X, Zhu Z, Jia B - PLoS ONE (2014)

Bottom Line: Three experienced nuclear medicine physicians blindly read the 99mTc-3PRGD2 and 99mTc-MDP images.Eighty-nine bone lesions in 18 patients were diagnosed as metastases and 23 bone lesions in 9 patients were benign.In a lesion-based analysis, 99mTc-3PRGD2 imaging demonstrated a sensitivity, specificity, and accuracy of 92.1%, 91.3%, and 92.0%, respectively.

View Article: PubMed Central - PubMed

Affiliation: Department of Nuclear Medicine, the 1st Affiliated Hospital of Fujian Medical University, Fuzhou, China.

ABSTRACT

Purpose: 99mTc-3PRGD2, a promising tracer targeting integrin receptor, may serve as a novel tumor-specific agent for single photon emission computed tomography (SPECT). A multi-center study was prospectively designed to evaluate the diagnostic accuracy of 99mTc-3PRGD2 imaging for bone metastasis in patients with lung cancer in comparison with the conventional 99mTc-MDP bone scan.

Methods: The patients underwent whole-body scan and chest tomography successively at both 1 h and 4 h after intravenous injection of 11.1 MBq/Kg 99mTc-3PRGD2. 99mTc-MDP whole-body bone scan was routinely performed within 1 week for comparison. Three experienced nuclear medicine physicians blindly read the 99mTc-3PRGD2 and 99mTc-MDP images. The final diagnosis was established based on the comprehensive assessment of all available data.

Results: A total of 44 patients (29 male, 59±10 years old) with suspected lung cancer were recruited from 4 centers. Eighty-nine bone lesions in 18 patients were diagnosed as metastases and 23 bone lesions in 9 patients were benign. In a lesion-based analysis, 99mTc-3PRGD2 imaging demonstrated a sensitivity, specificity, and accuracy of 92.1%, 91.3%, and 92.0%, respectively. The corresponding diagnostic values for 99mTc-MDP bone scan were 87.6%, 60.9%, and 82.1%, respectively in the same patients. 99mTc-MDP bone scan had better contrast in most lesions, whereas the 99mTc-3PRGD2 imaging seemed to be more effective to exclude pseudo-positive lesions and detect bone metastases without osteogenesis.

Conclusion: 99mTc-3PRGD2 is a novel tumor-specific agent based on SPECT technology with a promising value in diagnosis of bone metastasis in patients with lung cancer.

Trial registration: ClinicalTrials.gov NCT01737112.

Show MeSH

Related in: MedlinePlus

Comparison of 99mTc-3PRGD2 integrin receptor imaging with 99mTc-MDP bone scan in a patient with multiple bone metastases.A: The 99mTc-3PRGD2 imaging showed the lung cancer (green arrow), lymph node metastases (blue arrow), and bone metastases (red arrow) at the same time. The 1-h imaging is better than the 4-h imaging because of the relatively lower background in bone marrow, liver, and spleen. B. 99mTc-MDP bone scan demonstrated better contrast, facilitating the detection of small bone lesions. However, 99mTc-MDP accumulated for the bone repair with limited specificity, whereas 99mTc-3PRGD2 targeted the metastatic tumor directly.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4206469&req=5

pone-0111221-g003: Comparison of 99mTc-3PRGD2 integrin receptor imaging with 99mTc-MDP bone scan in a patient with multiple bone metastases.A: The 99mTc-3PRGD2 imaging showed the lung cancer (green arrow), lymph node metastases (blue arrow), and bone metastases (red arrow) at the same time. The 1-h imaging is better than the 4-h imaging because of the relatively lower background in bone marrow, liver, and spleen. B. 99mTc-MDP bone scan demonstrated better contrast, facilitating the detection of small bone lesions. However, 99mTc-MDP accumulated for the bone repair with limited specificity, whereas 99mTc-3PRGD2 targeted the metastatic tumor directly.

Mentions: The 4-h 99mTc-3PRGD2 images showed more prominent uptake in the bone marrow and bowels than the 1-h images, which caused difficulties in identifying bone lesions, especially in the vertebral and pelvic regions (Fig. 3 and 4). According to the lesion-based analysis, the 1-h 99mTc-3PRGD2 imaging revealed more bone lesions than the 4-h imaging. Both false positive and false negative lesions were more common in the 4-h imaging than in the 1-h imaging. On the 1-h images, there were 2 false positive lesions located in thoracic vertebra (n = 2); whereas on the 4-h images, except for the above-mentioned 2 false positive lesions, there were 4 more false positive lesions in the ribs. Seven false negative lesions occurred in the ribs (n = 5), lumbar vertebra (n = 1), and ilium (n = 1) on the 1-h images; whereas on the 4-h images there were totally 22 false negative lesions, including in the ribs (n = 12), lumbar vertebra (n = 6), ilium (n = 2), and other sites (n = 2).


Comparison of 99mTc-3PRGD2 integrin receptor imaging with 99mTc-MDP bone scan in diagnosis of bone metastasis in patients with lung cancer: a multicenter study.

Miao W, Zheng S, Dai H, Wang F, Jin X, Zhu Z, Jia B - PLoS ONE (2014)

Comparison of 99mTc-3PRGD2 integrin receptor imaging with 99mTc-MDP bone scan in a patient with multiple bone metastases.A: The 99mTc-3PRGD2 imaging showed the lung cancer (green arrow), lymph node metastases (blue arrow), and bone metastases (red arrow) at the same time. The 1-h imaging is better than the 4-h imaging because of the relatively lower background in bone marrow, liver, and spleen. B. 99mTc-MDP bone scan demonstrated better contrast, facilitating the detection of small bone lesions. However, 99mTc-MDP accumulated for the bone repair with limited specificity, whereas 99mTc-3PRGD2 targeted the metastatic tumor directly.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4206469&req=5

pone-0111221-g003: Comparison of 99mTc-3PRGD2 integrin receptor imaging with 99mTc-MDP bone scan in a patient with multiple bone metastases.A: The 99mTc-3PRGD2 imaging showed the lung cancer (green arrow), lymph node metastases (blue arrow), and bone metastases (red arrow) at the same time. The 1-h imaging is better than the 4-h imaging because of the relatively lower background in bone marrow, liver, and spleen. B. 99mTc-MDP bone scan demonstrated better contrast, facilitating the detection of small bone lesions. However, 99mTc-MDP accumulated for the bone repair with limited specificity, whereas 99mTc-3PRGD2 targeted the metastatic tumor directly.
Mentions: The 4-h 99mTc-3PRGD2 images showed more prominent uptake in the bone marrow and bowels than the 1-h images, which caused difficulties in identifying bone lesions, especially in the vertebral and pelvic regions (Fig. 3 and 4). According to the lesion-based analysis, the 1-h 99mTc-3PRGD2 imaging revealed more bone lesions than the 4-h imaging. Both false positive and false negative lesions were more common in the 4-h imaging than in the 1-h imaging. On the 1-h images, there were 2 false positive lesions located in thoracic vertebra (n = 2); whereas on the 4-h images, except for the above-mentioned 2 false positive lesions, there were 4 more false positive lesions in the ribs. Seven false negative lesions occurred in the ribs (n = 5), lumbar vertebra (n = 1), and ilium (n = 1) on the 1-h images; whereas on the 4-h images there were totally 22 false negative lesions, including in the ribs (n = 12), lumbar vertebra (n = 6), ilium (n = 2), and other sites (n = 2).

Bottom Line: Three experienced nuclear medicine physicians blindly read the 99mTc-3PRGD2 and 99mTc-MDP images.Eighty-nine bone lesions in 18 patients were diagnosed as metastases and 23 bone lesions in 9 patients were benign.In a lesion-based analysis, 99mTc-3PRGD2 imaging demonstrated a sensitivity, specificity, and accuracy of 92.1%, 91.3%, and 92.0%, respectively.

View Article: PubMed Central - PubMed

Affiliation: Department of Nuclear Medicine, the 1st Affiliated Hospital of Fujian Medical University, Fuzhou, China.

ABSTRACT

Purpose: 99mTc-3PRGD2, a promising tracer targeting integrin receptor, may serve as a novel tumor-specific agent for single photon emission computed tomography (SPECT). A multi-center study was prospectively designed to evaluate the diagnostic accuracy of 99mTc-3PRGD2 imaging for bone metastasis in patients with lung cancer in comparison with the conventional 99mTc-MDP bone scan.

Methods: The patients underwent whole-body scan and chest tomography successively at both 1 h and 4 h after intravenous injection of 11.1 MBq/Kg 99mTc-3PRGD2. 99mTc-MDP whole-body bone scan was routinely performed within 1 week for comparison. Three experienced nuclear medicine physicians blindly read the 99mTc-3PRGD2 and 99mTc-MDP images. The final diagnosis was established based on the comprehensive assessment of all available data.

Results: A total of 44 patients (29 male, 59±10 years old) with suspected lung cancer were recruited from 4 centers. Eighty-nine bone lesions in 18 patients were diagnosed as metastases and 23 bone lesions in 9 patients were benign. In a lesion-based analysis, 99mTc-3PRGD2 imaging demonstrated a sensitivity, specificity, and accuracy of 92.1%, 91.3%, and 92.0%, respectively. The corresponding diagnostic values for 99mTc-MDP bone scan were 87.6%, 60.9%, and 82.1%, respectively in the same patients. 99mTc-MDP bone scan had better contrast in most lesions, whereas the 99mTc-3PRGD2 imaging seemed to be more effective to exclude pseudo-positive lesions and detect bone metastases without osteogenesis.

Conclusion: 99mTc-3PRGD2 is a novel tumor-specific agent based on SPECT technology with a promising value in diagnosis of bone metastasis in patients with lung cancer.

Trial registration: ClinicalTrials.gov NCT01737112.

Show MeSH
Related in: MedlinePlus