Limits...
Pterodactylus scolopaciceps Meyer, 1860 (Pterosauria, Pterodactyloidea) from the Upper Jurassic of Bavaria, Germany: the problem of cryptic pterosaur taxa in early ontogeny.

Vidovic SU, Martill DM - PLoS ONE (2014)

Bottom Line: P. scolopaciceps is found to be a valid taxon, but placement within Pterodactylus is inappropriate.Consequently, the new genus Aerodactylus is erected to accommodate it.A cladistic analysis demonstrates that Aerodactylus is distinct from Pterodactylus, but close to Cycnorhamphus Seeley, 1870, Ardeadactylus Bennett, 2013a and Aurorazhdarcho Frey, Meyer and Tischlinger, 2011, consequently we erect the inclusive taxon Aurorazhdarchidae for their reception.

View Article: PubMed Central - PubMed

Affiliation: School of Earth and Environmental sciences, University of Portsmouth, Portsmouth, United Kingdom.

ABSTRACT
The taxonomy of the Late Jurassic pterodactyloid pterosaur Pterodactylus scolopaciceps Meyer, 1860 from the Solnhofen Limestone Formation of Bavaria, Germany is reviewed. Its nomenclatural history is long and complex, having been synonymised with both P. kochi (Wagner, 1837), and P. antiquus (Sömmerring, 1812). The majority of pterosaur species from the Solnhofen Limestone, including P. scolopaciceps are represented by juveniles. Consequently, specimens can appear remarkably similar due to juvenile characteristics detracting from taxonomic differences that are exaggerated in later ontogeny. Previous morphological and morphometric analyses have failed to separate species or even genera due to this problem, and as a result many species have been subsumed into a single taxon. A hypodigm for P. scolopaciceps, comprising of the holotype (BSP AS V 29 a/b) and material Broili referred to the taxon is described. P. scolopaciceps is found to be a valid taxon, but placement within Pterodactylus is inappropriate. Consequently, the new genus Aerodactylus is erected to accommodate it. Aerodactylus can be diagnosed on account of a unique suite of characters including jaws containing 16 teeth per-jaw, per-side, which are more sparsely distributed caudally and terminate rostral to the nasoantorbital fenestra; dorsal surface of the skull is subtly depressed rostral of the cranial table; rostrum very elongate (RI = ∼7), terminating in a point; orbits correspondingly low and elongate; elongate cervical vertebrae (approximately three times the length of their width); wing-metacarpal elongate, but still shorter than the ulna and first wing-phalanx; and pteroid approximately 65% of the total length of the ulna, straight and extremely thin (less than one third the width of the ulna). A cladistic analysis demonstrates that Aerodactylus is distinct from Pterodactylus, but close to Cycnorhamphus Seeley, 1870, Ardeadactylus Bennett, 2013a and Aurorazhdarcho Frey, Meyer and Tischlinger, 2011, consequently we erect the inclusive taxon Aurorazhdarchidae for their reception.

Show MeSH

Related in: MedlinePlus

Skull depth vs cervical vertebra 5 length.A graph demonstrating the spread of data between morphotype one (open circles), morphotype two (filled circles) and Pterodactylus antiquus (Open square) in respect to their skull depth and cervical vertebra 5 length. Solid black lines = regression lines for respective morphotypes; dashed grey lines = 95% confidence limits.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4206445&req=5

pone-0110646-g008: Skull depth vs cervical vertebra 5 length.A graph demonstrating the spread of data between morphotype one (open circles), morphotype two (filled circles) and Pterodactylus antiquus (Open square) in respect to their skull depth and cervical vertebra 5 length. Solid black lines = regression lines for respective morphotypes; dashed grey lines = 95% confidence limits.

Mentions: A strongly supported morphotype with a wide disparity between the two regression lines (distribution 1 above) would report at least one strong R2 value for a morphotype, but a low value when all the specimens are analysed together. Notable examples include skull length vs skull depth (Fig. 7), skull depth vs humeral length, skull depth vs PCRW length (praecaudale Rumpfwirbelsäule = combined length of the dorsal and sacral vertebrae [2]), skull depth vs cervical vertebra five length (Fig. 8), and orbit depth vs femur length (Fig. 9). The 95% confidence ellipses for each morphotype contain 100% of specimens for each respective morphotype and graph. The confidence ellipses for skull length vs skull depth (Fig. 7) and skull depth vs cervical vertebra five length (Fig. 8) are well separated, but in the case of orbit depth vs femur length, a poorly supported relationship for morphotype one results in intersecting confidence ellipses. Additionally, when the regression lines on many of these graphs are projected to intersect the y-axis (ANCOVA), there is still notable separation between many of the regression lines. For example, orbit length vs orbit depth; skull length vs skull depth; and pes length vs PCRW all demonstrate covariance in the ANCOVA.


Pterodactylus scolopaciceps Meyer, 1860 (Pterosauria, Pterodactyloidea) from the Upper Jurassic of Bavaria, Germany: the problem of cryptic pterosaur taxa in early ontogeny.

Vidovic SU, Martill DM - PLoS ONE (2014)

Skull depth vs cervical vertebra 5 length.A graph demonstrating the spread of data between morphotype one (open circles), morphotype two (filled circles) and Pterodactylus antiquus (Open square) in respect to their skull depth and cervical vertebra 5 length. Solid black lines = regression lines for respective morphotypes; dashed grey lines = 95% confidence limits.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4206445&req=5

pone-0110646-g008: Skull depth vs cervical vertebra 5 length.A graph demonstrating the spread of data between morphotype one (open circles), morphotype two (filled circles) and Pterodactylus antiquus (Open square) in respect to their skull depth and cervical vertebra 5 length. Solid black lines = regression lines for respective morphotypes; dashed grey lines = 95% confidence limits.
Mentions: A strongly supported morphotype with a wide disparity between the two regression lines (distribution 1 above) would report at least one strong R2 value for a morphotype, but a low value when all the specimens are analysed together. Notable examples include skull length vs skull depth (Fig. 7), skull depth vs humeral length, skull depth vs PCRW length (praecaudale Rumpfwirbelsäule = combined length of the dorsal and sacral vertebrae [2]), skull depth vs cervical vertebra five length (Fig. 8), and orbit depth vs femur length (Fig. 9). The 95% confidence ellipses for each morphotype contain 100% of specimens for each respective morphotype and graph. The confidence ellipses for skull length vs skull depth (Fig. 7) and skull depth vs cervical vertebra five length (Fig. 8) are well separated, but in the case of orbit depth vs femur length, a poorly supported relationship for morphotype one results in intersecting confidence ellipses. Additionally, when the regression lines on many of these graphs are projected to intersect the y-axis (ANCOVA), there is still notable separation between many of the regression lines. For example, orbit length vs orbit depth; skull length vs skull depth; and pes length vs PCRW all demonstrate covariance in the ANCOVA.

Bottom Line: P. scolopaciceps is found to be a valid taxon, but placement within Pterodactylus is inappropriate.Consequently, the new genus Aerodactylus is erected to accommodate it.A cladistic analysis demonstrates that Aerodactylus is distinct from Pterodactylus, but close to Cycnorhamphus Seeley, 1870, Ardeadactylus Bennett, 2013a and Aurorazhdarcho Frey, Meyer and Tischlinger, 2011, consequently we erect the inclusive taxon Aurorazhdarchidae for their reception.

View Article: PubMed Central - PubMed

Affiliation: School of Earth and Environmental sciences, University of Portsmouth, Portsmouth, United Kingdom.

ABSTRACT
The taxonomy of the Late Jurassic pterodactyloid pterosaur Pterodactylus scolopaciceps Meyer, 1860 from the Solnhofen Limestone Formation of Bavaria, Germany is reviewed. Its nomenclatural history is long and complex, having been synonymised with both P. kochi (Wagner, 1837), and P. antiquus (Sömmerring, 1812). The majority of pterosaur species from the Solnhofen Limestone, including P. scolopaciceps are represented by juveniles. Consequently, specimens can appear remarkably similar due to juvenile characteristics detracting from taxonomic differences that are exaggerated in later ontogeny. Previous morphological and morphometric analyses have failed to separate species or even genera due to this problem, and as a result many species have been subsumed into a single taxon. A hypodigm for P. scolopaciceps, comprising of the holotype (BSP AS V 29 a/b) and material Broili referred to the taxon is described. P. scolopaciceps is found to be a valid taxon, but placement within Pterodactylus is inappropriate. Consequently, the new genus Aerodactylus is erected to accommodate it. Aerodactylus can be diagnosed on account of a unique suite of characters including jaws containing 16 teeth per-jaw, per-side, which are more sparsely distributed caudally and terminate rostral to the nasoantorbital fenestra; dorsal surface of the skull is subtly depressed rostral of the cranial table; rostrum very elongate (RI = ∼7), terminating in a point; orbits correspondingly low and elongate; elongate cervical vertebrae (approximately three times the length of their width); wing-metacarpal elongate, but still shorter than the ulna and first wing-phalanx; and pteroid approximately 65% of the total length of the ulna, straight and extremely thin (less than one third the width of the ulna). A cladistic analysis demonstrates that Aerodactylus is distinct from Pterodactylus, but close to Cycnorhamphus Seeley, 1870, Ardeadactylus Bennett, 2013a and Aurorazhdarcho Frey, Meyer and Tischlinger, 2011, consequently we erect the inclusive taxon Aurorazhdarchidae for their reception.

Show MeSH
Related in: MedlinePlus