Limits...
Geographic population structure of the sugarcane borer, Diatraea saccharalis (F.) (Lepidoptera: Crambidae), in the southern United States.

Joyce AL, White WH, Nuessly GS, Solis MA, Scheffer SJ, Lewis ML, Medina RF - PLoS ONE (2014)

Bottom Line: Two molecular markers, AFLPs and mitochondrial COI, were used to examine genetic variation among these regional populations and to compare the sequences with those available in GenBank and BOLD.We found geographic population structure in the southern United States which suggests two introductions and the presence of a previously unknown cryptic species.Management of D. saccharalis would likely benefit from further investigation of population genetics throughout the range of this species.

View Article: PubMed Central - PubMed

Affiliation: SNRI, University of California Merced, Merced, California, United States of America.

ABSTRACT
The sugarcane borer moth, Diatraea saccharalis, is widespread throughout the Western Hemisphere, and is considered an introduced species in the southern United States. Although this moth has a wide distribution and is a pest of many crop plants including sugarcane, corn, sorghum and rice, it is considered one species. The objective was to investigate whether more than one introduction of D. saccharalis had occurred in the southern United States and whether any cryptic species were present. We field collected D. saccharalis in Texas, Louisiana and Florida in the southern United States. Two molecular markers, AFLPs and mitochondrial COI, were used to examine genetic variation among these regional populations and to compare the sequences with those available in GenBank and BOLD. We found geographic population structure in the southern United States which suggests two introductions and the presence of a previously unknown cryptic species. Management of D. saccharalis would likely benefit from further investigation of population genetics throughout the range of this species.

Show MeSH

Related in: MedlinePlus

Neighbor joining phylogram of D. saccharalis populations.The phylogram is based on a neighbor joining analysis of 658 bp of the COI barcode region. Bootstrap support values are based on 500 pseudoreplicates, and those above 80% are shown below supported nodes. Individuals collected as part of this study are shown in color: Florida in green; Texas/Louisiana in red. Individuals shown in black were obtained from GenBank and BOLD databases. See Table 1 for specimen details.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4206286&req=5

pone-0110036-g003: Neighbor joining phylogram of D. saccharalis populations.The phylogram is based on a neighbor joining analysis of 658 bp of the COI barcode region. Bootstrap support values are based on 500 pseudoreplicates, and those above 80% are shown below supported nodes. Individuals collected as part of this study are shown in color: Florida in green; Texas/Louisiana in red. Individuals shown in black were obtained from GenBank and BOLD databases. See Table 1 for specimen details.

Mentions: Diatraea saccharalis from Texas, Louisiana and Florida were field collected as larvae or adults during 2009–2010. No specific permissions were required for collecting insects in any of these locations, and the field studies did not involve any endangered or protected species. In Louisiana, D. saccharalis larvae were collected on sugarcane plants. We first identified sugarcane plants with larval feeding damage (holes in plant stems with larval frass) and then removed larvae from plants, placed them on artificial diet (Southland Products, Lake Village Arkansas) in 60 ml plastic cups, and transported them to the laboratory to rear them into adults. Field collections in Louisiana were made in June and September 2009 at field sites within 200 km of the United States Department of Agriculture (USDA) Agricultural Research Service (ARS) Sugarcane Research laboratory in Houma, Louisiana (Table 1). Larvae were reared individually on artificial diet at room temperature in the laboratory (25°C±2°C, 50% RH) until adult moths or parasitoids emerged [33]. Adult moths or parasitoids were then placed into individual vials and stored at −80°C for subsequent DNA studies. In eastern Texas, the collection site was at Beaumont, Texas within the Texas A&M Agrilife Research Center (Table 1). Diatraea saccharalis larvae from eastern Texas were field collected from Saccharum spp. (high fiber >20%, known as ‘energy cane’) throughout the growing season in 2009 and were similarly fed artificial diet until they became adults. In southern Texas, D. saccharalis larvae were rare on sugarcane plants. For this reason, live adult female D. saccharalis were used as lures to attract and trap adult males in July, August and September 2010 near a sugarcane mill in Santa Rosa, Texas (Table 1). Adult males were trapped on sticky cards, removed the following day, stored in 90% ethanol and were later frozen for DNA analyses. In Florida, adult male D. saccharalis moths were also collected using live adult females as lures. Florida samples were collected in August 2009 within the University of Florida Everglades Research and Education Center in Belle Glade, Florida (Table 1). Female D. saccharalis used as lures in Texas and Florida originated from a laboratory colony at the USDA ARS Sugarcane Research Laboratory unit in Houma, Louisiana. All adult moths were placed into 1.5 ml micro centrifuge tubes and stored at −80°C until used for DNA extraction.


Geographic population structure of the sugarcane borer, Diatraea saccharalis (F.) (Lepidoptera: Crambidae), in the southern United States.

Joyce AL, White WH, Nuessly GS, Solis MA, Scheffer SJ, Lewis ML, Medina RF - PLoS ONE (2014)

Neighbor joining phylogram of D. saccharalis populations.The phylogram is based on a neighbor joining analysis of 658 bp of the COI barcode region. Bootstrap support values are based on 500 pseudoreplicates, and those above 80% are shown below supported nodes. Individuals collected as part of this study are shown in color: Florida in green; Texas/Louisiana in red. Individuals shown in black were obtained from GenBank and BOLD databases. See Table 1 for specimen details.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4206286&req=5

pone-0110036-g003: Neighbor joining phylogram of D. saccharalis populations.The phylogram is based on a neighbor joining analysis of 658 bp of the COI barcode region. Bootstrap support values are based on 500 pseudoreplicates, and those above 80% are shown below supported nodes. Individuals collected as part of this study are shown in color: Florida in green; Texas/Louisiana in red. Individuals shown in black were obtained from GenBank and BOLD databases. See Table 1 for specimen details.
Mentions: Diatraea saccharalis from Texas, Louisiana and Florida were field collected as larvae or adults during 2009–2010. No specific permissions were required for collecting insects in any of these locations, and the field studies did not involve any endangered or protected species. In Louisiana, D. saccharalis larvae were collected on sugarcane plants. We first identified sugarcane plants with larval feeding damage (holes in plant stems with larval frass) and then removed larvae from plants, placed them on artificial diet (Southland Products, Lake Village Arkansas) in 60 ml plastic cups, and transported them to the laboratory to rear them into adults. Field collections in Louisiana were made in June and September 2009 at field sites within 200 km of the United States Department of Agriculture (USDA) Agricultural Research Service (ARS) Sugarcane Research laboratory in Houma, Louisiana (Table 1). Larvae were reared individually on artificial diet at room temperature in the laboratory (25°C±2°C, 50% RH) until adult moths or parasitoids emerged [33]. Adult moths or parasitoids were then placed into individual vials and stored at −80°C for subsequent DNA studies. In eastern Texas, the collection site was at Beaumont, Texas within the Texas A&M Agrilife Research Center (Table 1). Diatraea saccharalis larvae from eastern Texas were field collected from Saccharum spp. (high fiber >20%, known as ‘energy cane’) throughout the growing season in 2009 and were similarly fed artificial diet until they became adults. In southern Texas, D. saccharalis larvae were rare on sugarcane plants. For this reason, live adult female D. saccharalis were used as lures to attract and trap adult males in July, August and September 2010 near a sugarcane mill in Santa Rosa, Texas (Table 1). Adult males were trapped on sticky cards, removed the following day, stored in 90% ethanol and were later frozen for DNA analyses. In Florida, adult male D. saccharalis moths were also collected using live adult females as lures. Florida samples were collected in August 2009 within the University of Florida Everglades Research and Education Center in Belle Glade, Florida (Table 1). Female D. saccharalis used as lures in Texas and Florida originated from a laboratory colony at the USDA ARS Sugarcane Research Laboratory unit in Houma, Louisiana. All adult moths were placed into 1.5 ml micro centrifuge tubes and stored at −80°C until used for DNA extraction.

Bottom Line: Two molecular markers, AFLPs and mitochondrial COI, were used to examine genetic variation among these regional populations and to compare the sequences with those available in GenBank and BOLD.We found geographic population structure in the southern United States which suggests two introductions and the presence of a previously unknown cryptic species.Management of D. saccharalis would likely benefit from further investigation of population genetics throughout the range of this species.

View Article: PubMed Central - PubMed

Affiliation: SNRI, University of California Merced, Merced, California, United States of America.

ABSTRACT
The sugarcane borer moth, Diatraea saccharalis, is widespread throughout the Western Hemisphere, and is considered an introduced species in the southern United States. Although this moth has a wide distribution and is a pest of many crop plants including sugarcane, corn, sorghum and rice, it is considered one species. The objective was to investigate whether more than one introduction of D. saccharalis had occurred in the southern United States and whether any cryptic species were present. We field collected D. saccharalis in Texas, Louisiana and Florida in the southern United States. Two molecular markers, AFLPs and mitochondrial COI, were used to examine genetic variation among these regional populations and to compare the sequences with those available in GenBank and BOLD. We found geographic population structure in the southern United States which suggests two introductions and the presence of a previously unknown cryptic species. Management of D. saccharalis would likely benefit from further investigation of population genetics throughout the range of this species.

Show MeSH
Related in: MedlinePlus