Limits...
Indole and synthetic derivative activate chaperone expression to reduce polyQ aggregation in SCA17 neuronal cell and slice culture models.

Kung PJ, Tao YC, Hsu HC, Chen WL, Lin TH, Janreddy D, Yao CF, Chang KH, Lin JY, Su MT, Wu CH, Lee-Chen GJ, Hsieh-Li HM - Drug Des Devel Ther (2014)

Bottom Line: The molecular chaperones act in preventing protein aggregation to ameliorate downstream harmful events.We found that indole and NC001-8 up-regulated chaperone expression to reduce polyQ aggregation in neuronal differentiated TBP/Q79 cells.Our results demonstrate how indole and derivative NC001-8 reduce polyQ aggregation to support their therapeutic potentials in SCA17 treatment.

View Article: PubMed Central - PubMed

Affiliation: Department of Life Science, National Taiwan Normal University, Taipei, Taiwan.

ABSTRACT
In spinocerebellar ataxia type 17 (SCA17), the expansion of a translated CAG repeat in the TATA box binding protein (TBP) gene results in a long polyglutamine (polyQ) tract in the TBP protein, leading to intracellular accumulation of aggregated TBP and cell death. The molecular chaperones act in preventing protein aggregation to ameliorate downstream harmful events. In this study, we used Tet-On SH-SY5Y cells with inducible SCA17 TBP/Q79-green fluorescent protein (GFP) expression to test indole and synthetic derivative NC001-8 for neuroprotection. We found that indole and NC001-8 up-regulated chaperone expression to reduce polyQ aggregation in neuronal differentiated TBP/Q79 cells. The effects on promoting neurite outgrowth and on reduction of aggregation on Purkinje cells were also confirmed with cerebellar primary and slice cultures of SCA17 transgenic mice. Our results demonstrate how indole and derivative NC001-8 reduce polyQ aggregation to support their therapeutic potentials in SCA17 treatment.

Show MeSH

Related in: MedlinePlus

Enhancement of chaperone expression by indole and NC001-8 in HEK-293 cells.Notes: (A) Fluorescent reporters mCherry, ZsYellow1, and AmCyan1 driven by HSF1, HSPA8, and HSPA1A promoter fragments, respectively (top), and effects of GGA, indole, and NC001-8 (100 nM~100 μM) on HSF1, HSPA8, and HSPA1A promoter activities (bottom). To normalize, the fluorescence level in untreated cells is set as 100%. Three independent experiments were performed, with P<0.05 considered significant. (B) Representative Western blot images of HEK-293 cells treated with GGA, indole and NC001-8 (100 nM) for two days, using HSF1, HSPA8, HSPA1A, and β-actin antibodies. Levels of HSF1, HSPA8, and HSPA1A were normalized with a loading control (β-actin). Data are expressed as the mean ± standard deviation values from three independent experiments.Abbreviations: GGA, geranylgeranylacetone; 001-8, NC001-8; HSF1, heat shock transcription factor 1; Rel., relative; HSPA8, heat shock 70 kDa protein 8; HSPA1A, heat shock 70 kDa protein 1A.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4206201&req=5

f2-dddt-8-1929: Enhancement of chaperone expression by indole and NC001-8 in HEK-293 cells.Notes: (A) Fluorescent reporters mCherry, ZsYellow1, and AmCyan1 driven by HSF1, HSPA8, and HSPA1A promoter fragments, respectively (top), and effects of GGA, indole, and NC001-8 (100 nM~100 μM) on HSF1, HSPA8, and HSPA1A promoter activities (bottom). To normalize, the fluorescence level in untreated cells is set as 100%. Three independent experiments were performed, with P<0.05 considered significant. (B) Representative Western blot images of HEK-293 cells treated with GGA, indole and NC001-8 (100 nM) for two days, using HSF1, HSPA8, HSPA1A, and β-actin antibodies. Levels of HSF1, HSPA8, and HSPA1A were normalized with a loading control (β-actin). Data are expressed as the mean ± standard deviation values from three independent experiments.Abbreviations: GGA, geranylgeranylacetone; 001-8, NC001-8; HSF1, heat shock transcription factor 1; Rel., relative; HSPA8, heat shock 70 kDa protein 8; HSPA1A, heat shock 70 kDa protein 1A.

Mentions: To examine the potential of indole/NC001-8 to enhance HSF1 and HSP70 chaperone expression, triple fluorescent reporter cells with mCherry, ZsYellow1, and AmCyan1 reporters driven by HSF1, HSPA8, and HSPA1A promoters were used. As shown in Figure 2A, 1 day GGA treatment (100 nM~100 μM) significantly increases HSF1, HSPA8, and HSPA1A promoter activity (HSF1, 110%~112% [P=0.010~0.002]; HSPA8, 106%~116% [P=0.024~0.000]; HSPA1A, 108%~118% [P=0.034~0.001]). This is also true for 100 nM~100 μM indole treatment, with 117%~125% HSF1 (P=0.045~0.030), 118%~125% HSPA8 (P=0.046~0.016), and 116%~123% HSPA1A (P=0.043~0.011) promoter activities compared with no treatment. For NC001-8 treatment (100 nM~100 μM), HSF1 (111%~123%; P=0.042~0.007), HSPA8 (109%~118%; P=0.048~0.004), and HSPA1A (106%~121%; P=0.042~0.003) promoter activities were also significantly increased. The enhancement of indole and NC001-8 (100 nM) on HSF1 (113%~114%; P=0.021~0.007), HSPA8 (108%~109%; P=0.046~0.028), and HSPA1A (119%~120%; P=0.035~0.001) expression was verified by the Western blot in HEK-293 cells after 2 days of treatment (Figure 2B).


Indole and synthetic derivative activate chaperone expression to reduce polyQ aggregation in SCA17 neuronal cell and slice culture models.

Kung PJ, Tao YC, Hsu HC, Chen WL, Lin TH, Janreddy D, Yao CF, Chang KH, Lin JY, Su MT, Wu CH, Lee-Chen GJ, Hsieh-Li HM - Drug Des Devel Ther (2014)

Enhancement of chaperone expression by indole and NC001-8 in HEK-293 cells.Notes: (A) Fluorescent reporters mCherry, ZsYellow1, and AmCyan1 driven by HSF1, HSPA8, and HSPA1A promoter fragments, respectively (top), and effects of GGA, indole, and NC001-8 (100 nM~100 μM) on HSF1, HSPA8, and HSPA1A promoter activities (bottom). To normalize, the fluorescence level in untreated cells is set as 100%. Three independent experiments were performed, with P<0.05 considered significant. (B) Representative Western blot images of HEK-293 cells treated with GGA, indole and NC001-8 (100 nM) for two days, using HSF1, HSPA8, HSPA1A, and β-actin antibodies. Levels of HSF1, HSPA8, and HSPA1A were normalized with a loading control (β-actin). Data are expressed as the mean ± standard deviation values from three independent experiments.Abbreviations: GGA, geranylgeranylacetone; 001-8, NC001-8; HSF1, heat shock transcription factor 1; Rel., relative; HSPA8, heat shock 70 kDa protein 8; HSPA1A, heat shock 70 kDa protein 1A.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4206201&req=5

f2-dddt-8-1929: Enhancement of chaperone expression by indole and NC001-8 in HEK-293 cells.Notes: (A) Fluorescent reporters mCherry, ZsYellow1, and AmCyan1 driven by HSF1, HSPA8, and HSPA1A promoter fragments, respectively (top), and effects of GGA, indole, and NC001-8 (100 nM~100 μM) on HSF1, HSPA8, and HSPA1A promoter activities (bottom). To normalize, the fluorescence level in untreated cells is set as 100%. Three independent experiments were performed, with P<0.05 considered significant. (B) Representative Western blot images of HEK-293 cells treated with GGA, indole and NC001-8 (100 nM) for two days, using HSF1, HSPA8, HSPA1A, and β-actin antibodies. Levels of HSF1, HSPA8, and HSPA1A were normalized with a loading control (β-actin). Data are expressed as the mean ± standard deviation values from three independent experiments.Abbreviations: GGA, geranylgeranylacetone; 001-8, NC001-8; HSF1, heat shock transcription factor 1; Rel., relative; HSPA8, heat shock 70 kDa protein 8; HSPA1A, heat shock 70 kDa protein 1A.
Mentions: To examine the potential of indole/NC001-8 to enhance HSF1 and HSP70 chaperone expression, triple fluorescent reporter cells with mCherry, ZsYellow1, and AmCyan1 reporters driven by HSF1, HSPA8, and HSPA1A promoters were used. As shown in Figure 2A, 1 day GGA treatment (100 nM~100 μM) significantly increases HSF1, HSPA8, and HSPA1A promoter activity (HSF1, 110%~112% [P=0.010~0.002]; HSPA8, 106%~116% [P=0.024~0.000]; HSPA1A, 108%~118% [P=0.034~0.001]). This is also true for 100 nM~100 μM indole treatment, with 117%~125% HSF1 (P=0.045~0.030), 118%~125% HSPA8 (P=0.046~0.016), and 116%~123% HSPA1A (P=0.043~0.011) promoter activities compared with no treatment. For NC001-8 treatment (100 nM~100 μM), HSF1 (111%~123%; P=0.042~0.007), HSPA8 (109%~118%; P=0.048~0.004), and HSPA1A (106%~121%; P=0.042~0.003) promoter activities were also significantly increased. The enhancement of indole and NC001-8 (100 nM) on HSF1 (113%~114%; P=0.021~0.007), HSPA8 (108%~109%; P=0.046~0.028), and HSPA1A (119%~120%; P=0.035~0.001) expression was verified by the Western blot in HEK-293 cells after 2 days of treatment (Figure 2B).

Bottom Line: The molecular chaperones act in preventing protein aggregation to ameliorate downstream harmful events.We found that indole and NC001-8 up-regulated chaperone expression to reduce polyQ aggregation in neuronal differentiated TBP/Q79 cells.Our results demonstrate how indole and derivative NC001-8 reduce polyQ aggregation to support their therapeutic potentials in SCA17 treatment.

View Article: PubMed Central - PubMed

Affiliation: Department of Life Science, National Taiwan Normal University, Taipei, Taiwan.

ABSTRACT
In spinocerebellar ataxia type 17 (SCA17), the expansion of a translated CAG repeat in the TATA box binding protein (TBP) gene results in a long polyglutamine (polyQ) tract in the TBP protein, leading to intracellular accumulation of aggregated TBP and cell death. The molecular chaperones act in preventing protein aggregation to ameliorate downstream harmful events. In this study, we used Tet-On SH-SY5Y cells with inducible SCA17 TBP/Q79-green fluorescent protein (GFP) expression to test indole and synthetic derivative NC001-8 for neuroprotection. We found that indole and NC001-8 up-regulated chaperone expression to reduce polyQ aggregation in neuronal differentiated TBP/Q79 cells. The effects on promoting neurite outgrowth and on reduction of aggregation on Purkinje cells were also confirmed with cerebellar primary and slice cultures of SCA17 transgenic mice. Our results demonstrate how indole and derivative NC001-8 reduce polyQ aggregation to support their therapeutic potentials in SCA17 treatment.

Show MeSH
Related in: MedlinePlus