Limits...
Influence of caffeine and hyaluronic acid on collagen biosynthesis in human skin fibroblasts.

Donejko M, Przylipiak A, Rysiak E, Głuszuk K, Surażyński A - Drug Des Devel Ther (2014)

Bottom Line: HA, however, did not have any significant effect on this process.Caffeine reduces collagen synthesis in human cultured skin fibroblasts.HA did not have any significant protective effect on this process.

View Article: PubMed Central - PubMed

Affiliation: Department of Esthetic Medicine, Faculty of Pharmacy, Medical University of Białystok, Białystok, Poland.

ABSTRACT

Aim: The aim of this study was to evaluate the effect of caffeine on collagen biosynthesis in human skin fibroblasts and the influence of hyaluronic acid (HA) on this process.

Materials and methods: Collagen, [(3)H]-thymidine incorporation, and prolidase activity were measured in confluent human skin fibroblast cultures that had been treated with 1, 2, and 5 mM caffeine and with caffeine and 500 μg/mL HA. Western immunoblot analysis was performed to evaluate expression of β1-integrin receptor, insulin-like growth factor receptor phospho-Akt protein and mitogen-activated protein kinase (phospho-extracellular signal-regulated kinase).

Results: Caffeine inhibited collagen biosynthesis in a dose-dependent manner. The mechanism of this process was found at the level of prolidase activity. Caffeine significantly inhibited the enzyme activity. The addition of HA had no effect on collagen biosynthesis or prolidase activity in fibroblasts incubated with caffeine. Caffeine also had an inhibitory effect on DNA biosynthesis. HA, however, did not have any significant effect on this process. The inhibition of the expression of β1-integrin and insulin-like growth factor receptor in fibroblasts incubated with the caffeine indicates a possible mechanism of inhibition of collagen biosynthesis.

Conclusion: Caffeine reduces collagen synthesis in human cultured skin fibroblasts. HA did not have any significant protective effect on this process. This is the first study to our knowledge that reports caffeine-induced inhibition of collagen synthesis in human skin fibroblasts.

Show MeSH
Collagen biosynthesis measured as 5[3H]-proline incorporation into proteins susceptible to the action of bacterial collagenase in confluent human skin fibroblasts incubated for 24 hours with different concentrations of caffeine and hyaluronic acid (HA).Note: Error bars represent ± standard deviation; n=3.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4206198&req=5

f1-dddt-8-1923: Collagen biosynthesis measured as 5[3H]-proline incorporation into proteins susceptible to the action of bacterial collagenase in confluent human skin fibroblasts incubated for 24 hours with different concentrations of caffeine and hyaluronic acid (HA).Note: Error bars represent ± standard deviation; n=3.

Mentions: To assess the activity of caffeine on collagen synthesis in human skin fibroblasts, cells were incubated for 24 hours in 1, 2, and 5 mM caffeine as well as in caffeine with HA at a concentration of 500 μg/mL. In control cultures, collagen biosynthesis was intensive. It has been shown that caffeine significantly affects collagen synthesis (Figure 1). Exposure of the fibroblasts to different concentrations of the alkaloid led to the inhibition of the newly synthesized collagen by 48.04% (2.38% ± SD; n=3), 72.90% (3.60% ± SD; n=3), and 92.12% (3.81% ± SD; n=3), respectively, when compared with the control value. The addition of HA did not have a protective effect on the biosynthesis of collagen in cultures incubated with caffeine. The results presented provide evidence that caffeine has an inhibitory effect on collagen synthesis in confluent human skin fibroblasts, regardless of the presence of HA.


Influence of caffeine and hyaluronic acid on collagen biosynthesis in human skin fibroblasts.

Donejko M, Przylipiak A, Rysiak E, Głuszuk K, Surażyński A - Drug Des Devel Ther (2014)

Collagen biosynthesis measured as 5[3H]-proline incorporation into proteins susceptible to the action of bacterial collagenase in confluent human skin fibroblasts incubated for 24 hours with different concentrations of caffeine and hyaluronic acid (HA).Note: Error bars represent ± standard deviation; n=3.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4206198&req=5

f1-dddt-8-1923: Collagen biosynthesis measured as 5[3H]-proline incorporation into proteins susceptible to the action of bacterial collagenase in confluent human skin fibroblasts incubated for 24 hours with different concentrations of caffeine and hyaluronic acid (HA).Note: Error bars represent ± standard deviation; n=3.
Mentions: To assess the activity of caffeine on collagen synthesis in human skin fibroblasts, cells were incubated for 24 hours in 1, 2, and 5 mM caffeine as well as in caffeine with HA at a concentration of 500 μg/mL. In control cultures, collagen biosynthesis was intensive. It has been shown that caffeine significantly affects collagen synthesis (Figure 1). Exposure of the fibroblasts to different concentrations of the alkaloid led to the inhibition of the newly synthesized collagen by 48.04% (2.38% ± SD; n=3), 72.90% (3.60% ± SD; n=3), and 92.12% (3.81% ± SD; n=3), respectively, when compared with the control value. The addition of HA did not have a protective effect on the biosynthesis of collagen in cultures incubated with caffeine. The results presented provide evidence that caffeine has an inhibitory effect on collagen synthesis in confluent human skin fibroblasts, regardless of the presence of HA.

Bottom Line: HA, however, did not have any significant effect on this process.Caffeine reduces collagen synthesis in human cultured skin fibroblasts.HA did not have any significant protective effect on this process.

View Article: PubMed Central - PubMed

Affiliation: Department of Esthetic Medicine, Faculty of Pharmacy, Medical University of Białystok, Białystok, Poland.

ABSTRACT

Aim: The aim of this study was to evaluate the effect of caffeine on collagen biosynthesis in human skin fibroblasts and the influence of hyaluronic acid (HA) on this process.

Materials and methods: Collagen, [(3)H]-thymidine incorporation, and prolidase activity were measured in confluent human skin fibroblast cultures that had been treated with 1, 2, and 5 mM caffeine and with caffeine and 500 μg/mL HA. Western immunoblot analysis was performed to evaluate expression of β1-integrin receptor, insulin-like growth factor receptor phospho-Akt protein and mitogen-activated protein kinase (phospho-extracellular signal-regulated kinase).

Results: Caffeine inhibited collagen biosynthesis in a dose-dependent manner. The mechanism of this process was found at the level of prolidase activity. Caffeine significantly inhibited the enzyme activity. The addition of HA had no effect on collagen biosynthesis or prolidase activity in fibroblasts incubated with caffeine. Caffeine also had an inhibitory effect on DNA biosynthesis. HA, however, did not have any significant effect on this process. The inhibition of the expression of β1-integrin and insulin-like growth factor receptor in fibroblasts incubated with the caffeine indicates a possible mechanism of inhibition of collagen biosynthesis.

Conclusion: Caffeine reduces collagen synthesis in human cultured skin fibroblasts. HA did not have any significant protective effect on this process. This is the first study to our knowledge that reports caffeine-induced inhibition of collagen synthesis in human skin fibroblasts.

Show MeSH