Limits...
Gel-free proteomic analysis of soybean root proteins affected by calcium under flooding stress.

Oh M, Nanjo Y, Komatsu S - Front Plant Sci (2014)

Bottom Line: Soybean is sensitive to flooding stress and exhibits reduced growth under flooding conditions.Proteins involved in protein degradation/synthesis/posttranslational modification, hormone/cell wall metabolisms, and DNA synthesis were decreased by flooding stress; however, their reductions were recovered by calcium treatment.Fermentation and glycolysis-related proteins were increased in response to flooding; however, these proteins were not affected by calcium supplementation.

View Article: PubMed Central - PubMed

Affiliation: Life Sciences and Bioengineering, Graduate School of Life and Environmental Sciences, University of Tsukuba Tsukuba, Japan ; National Institute of Crop Science, National Agriculture and Food Research Organization Tsukuba, Japan.

ABSTRACT
Soybean is sensitive to flooding stress and exhibits reduced growth under flooding conditions. To better understand the flooding-responsive mechanisms of soybean, the effect of exogenous calcium on flooding-stressed soybeans was analyzed using proteomic technique. An increase in exogenous calcium levels enhanced soybean root elongation and suppressed the cell death of root tip under flooding stress. Proteins were extracted from the roots of 4-day-old soybean seedlings exposed to flooding stress without or with calcium for 2 days and analyzed using gel-free proteomic technique. Proteins involved in protein degradation/synthesis/posttranslational modification, hormone/cell wall metabolisms, and DNA synthesis were decreased by flooding stress; however, their reductions were recovered by calcium treatment. Development, lipid metabolism, and signaling-related proteins were increased in soybean roots when calcium was supplied under flooding stress. Fermentation and glycolysis-related proteins were increased in response to flooding; however, these proteins were not affected by calcium supplementation. Furthermore, urease and copper chaperone proteins exhibited similar profiles in 4-day-old untreated soybeans and 4-day-old soybeans exposed to flooding for 2 days in the presence of calcium. These results suggest that calcium might affect the cell wall/hormone metabolisms, protein degradation/synthesis, and DNA synthesis in soybean roots under flooding stress.

No MeSH data available.


Functional categorization of flooding-responsive proteins in soybean roots treated with calcium. Two-day-old soybeans were flooded without or with 50 mM CaCl2 for 2 days. Untreated soybeans were used as control. Proteins extracted from roots were analyzed using gel-free proteomics. The following comparisons were made: 4(0)/2(0), 2-day-old soybeans and 4-day-old soybeans; 4(2)F/2(0), 2-day-old soybeans and 2-day-flooded soybeans without calcium; and 4(2)F+Ca/2(0), 2-day-old soybeans and 2-day-flooded soybeans treated with calcium. Identified proteins were categorized using MapMan bin codes: protein, protein synthesis/targeting/degradation/post-translational modification; DNA, DNA synthesis; RNA, RNA processing/binding; C1, one carbon; TCA, tricarboxylic acid; OPP, oxidative pentose phosphate; CHO, carbohydrates; misc, miscellaneous. The number of differentially changed proteins is indicated on the x-axis of the graph. Black and white bars indicate decreased and increased proteins, respectively.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4202786&req=5

Figure 4: Functional categorization of flooding-responsive proteins in soybean roots treated with calcium. Two-day-old soybeans were flooded without or with 50 mM CaCl2 for 2 days. Untreated soybeans were used as control. Proteins extracted from roots were analyzed using gel-free proteomics. The following comparisons were made: 4(0)/2(0), 2-day-old soybeans and 4-day-old soybeans; 4(2)F/2(0), 2-day-old soybeans and 2-day-flooded soybeans without calcium; and 4(2)F+Ca/2(0), 2-day-old soybeans and 2-day-flooded soybeans treated with calcium. Identified proteins were categorized using MapMan bin codes: protein, protein synthesis/targeting/degradation/post-translational modification; DNA, DNA synthesis; RNA, RNA processing/binding; C1, one carbon; TCA, tricarboxylic acid; OPP, oxidative pentose phosphate; CHO, carbohydrates; misc, miscellaneous. The number of differentially changed proteins is indicated on the x-axis of the graph. Black and white bars indicate decreased and increased proteins, respectively.

Mentions: To determine the biological processes of proteins that were altered in flooding-stressed soybean roots by calcium treatment, the identified proteins were functionally characterized using MapMan bin codes (Figure 4). Under flooding stress, the number of proteins related to hormone metabolism, DNA synthesis, cell wall, and protein degradation/synthesis/posttranslational modification was decreased; however, the exposure of plants to calcium under flooding conditions increased the number of these proteins. Similarly, the number of proteins related to development, signaling, and lipid metabolism was increased when exogenous calcium was added to the roots of flooding-stressed plants. In addition, the number of proteins related to fermentation and glycolysis was increased under flooding stress; however, calcium supplementation had little effect on the number of differentially changed proteins (Figure 4). Proteins within the hormone category that were changed in response to flooding in absence or presence of calcium included lipoxygenase and auxin-responsive family protein.


Gel-free proteomic analysis of soybean root proteins affected by calcium under flooding stress.

Oh M, Nanjo Y, Komatsu S - Front Plant Sci (2014)

Functional categorization of flooding-responsive proteins in soybean roots treated with calcium. Two-day-old soybeans were flooded without or with 50 mM CaCl2 for 2 days. Untreated soybeans were used as control. Proteins extracted from roots were analyzed using gel-free proteomics. The following comparisons were made: 4(0)/2(0), 2-day-old soybeans and 4-day-old soybeans; 4(2)F/2(0), 2-day-old soybeans and 2-day-flooded soybeans without calcium; and 4(2)F+Ca/2(0), 2-day-old soybeans and 2-day-flooded soybeans treated with calcium. Identified proteins were categorized using MapMan bin codes: protein, protein synthesis/targeting/degradation/post-translational modification; DNA, DNA synthesis; RNA, RNA processing/binding; C1, one carbon; TCA, tricarboxylic acid; OPP, oxidative pentose phosphate; CHO, carbohydrates; misc, miscellaneous. The number of differentially changed proteins is indicated on the x-axis of the graph. Black and white bars indicate decreased and increased proteins, respectively.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4202786&req=5

Figure 4: Functional categorization of flooding-responsive proteins in soybean roots treated with calcium. Two-day-old soybeans were flooded without or with 50 mM CaCl2 for 2 days. Untreated soybeans were used as control. Proteins extracted from roots were analyzed using gel-free proteomics. The following comparisons were made: 4(0)/2(0), 2-day-old soybeans and 4-day-old soybeans; 4(2)F/2(0), 2-day-old soybeans and 2-day-flooded soybeans without calcium; and 4(2)F+Ca/2(0), 2-day-old soybeans and 2-day-flooded soybeans treated with calcium. Identified proteins were categorized using MapMan bin codes: protein, protein synthesis/targeting/degradation/post-translational modification; DNA, DNA synthesis; RNA, RNA processing/binding; C1, one carbon; TCA, tricarboxylic acid; OPP, oxidative pentose phosphate; CHO, carbohydrates; misc, miscellaneous. The number of differentially changed proteins is indicated on the x-axis of the graph. Black and white bars indicate decreased and increased proteins, respectively.
Mentions: To determine the biological processes of proteins that were altered in flooding-stressed soybean roots by calcium treatment, the identified proteins were functionally characterized using MapMan bin codes (Figure 4). Under flooding stress, the number of proteins related to hormone metabolism, DNA synthesis, cell wall, and protein degradation/synthesis/posttranslational modification was decreased; however, the exposure of plants to calcium under flooding conditions increased the number of these proteins. Similarly, the number of proteins related to development, signaling, and lipid metabolism was increased when exogenous calcium was added to the roots of flooding-stressed plants. In addition, the number of proteins related to fermentation and glycolysis was increased under flooding stress; however, calcium supplementation had little effect on the number of differentially changed proteins (Figure 4). Proteins within the hormone category that were changed in response to flooding in absence or presence of calcium included lipoxygenase and auxin-responsive family protein.

Bottom Line: Soybean is sensitive to flooding stress and exhibits reduced growth under flooding conditions.Proteins involved in protein degradation/synthesis/posttranslational modification, hormone/cell wall metabolisms, and DNA synthesis were decreased by flooding stress; however, their reductions were recovered by calcium treatment.Fermentation and glycolysis-related proteins were increased in response to flooding; however, these proteins were not affected by calcium supplementation.

View Article: PubMed Central - PubMed

Affiliation: Life Sciences and Bioengineering, Graduate School of Life and Environmental Sciences, University of Tsukuba Tsukuba, Japan ; National Institute of Crop Science, National Agriculture and Food Research Organization Tsukuba, Japan.

ABSTRACT
Soybean is sensitive to flooding stress and exhibits reduced growth under flooding conditions. To better understand the flooding-responsive mechanisms of soybean, the effect of exogenous calcium on flooding-stressed soybeans was analyzed using proteomic technique. An increase in exogenous calcium levels enhanced soybean root elongation and suppressed the cell death of root tip under flooding stress. Proteins were extracted from the roots of 4-day-old soybean seedlings exposed to flooding stress without or with calcium for 2 days and analyzed using gel-free proteomic technique. Proteins involved in protein degradation/synthesis/posttranslational modification, hormone/cell wall metabolisms, and DNA synthesis were decreased by flooding stress; however, their reductions were recovered by calcium treatment. Development, lipid metabolism, and signaling-related proteins were increased in soybean roots when calcium was supplied under flooding stress. Fermentation and glycolysis-related proteins were increased in response to flooding; however, these proteins were not affected by calcium supplementation. Furthermore, urease and copper chaperone proteins exhibited similar profiles in 4-day-old untreated soybeans and 4-day-old soybeans exposed to flooding for 2 days in the presence of calcium. These results suggest that calcium might affect the cell wall/hormone metabolisms, protein degradation/synthesis, and DNA synthesis in soybean roots under flooding stress.

No MeSH data available.