Limits...
Different neural systems contribute to semantic bias and conflict detection in the inclusion fallacy task.

Liang P, Goel V, Jia X, Li K - Front Hum Neurosci (2014)

Bottom Line: It was found that a left fronto-temporal system, along with a superior medial frontal system, was specifically activated in response to fallacious responses consistent with a semantic biasing of judgment explanation.A right fronto-parietal system was specifically recruited in response to detecting conflict associated with the heightened fallacy condition.These results are largely consistent with previous studies of reasoning fallacy and support a multiple systems model of reasoning.

View Article: PubMed Central - PubMed

Affiliation: Xuanwu Hospital, Capital Medical University , Beijing , China ; Brain Key Laboratory of Magnetic Resonance Imaging and Brain Informatics , Beijing , China.

ABSTRACT
The inclusion fallacy is a phenomenon in which generalization from a specific premise category to a more general conclusion category is considered stronger than a generalization to a specific conclusion category nested within the more general set. Such inferences violate rational norms and are part of the reasoning fallacy literature that provides interesting tasks to explore cognitive and neural basis of reasoning. To explore the functional neuroanatomy of the inclusion fallacy, we used a 2 × 2 factorial design, with factors for quantification (explicit and implicit) and response (fallacious and non-fallacious). It was found that a left fronto-temporal system, along with a superior medial frontal system, was specifically activated in response to fallacious responses consistent with a semantic biasing of judgment explanation. A right fronto-parietal system was specifically recruited in response to detecting conflict associated with the heightened fallacy condition. These results are largely consistent with previous studies of reasoning fallacy and support a multiple systems model of reasoning.

No MeSH data available.


A statistical parametric map (SPM) rendered into standard stereotactic space. The quantification (explicit, implicit) by response (fallacious, non-fallacious) interaction, i.e., a comparison of the difference between implicit fallacy trials versus implicit non-fallacy trials with the difference between explicit fallacy trials versus explicit non-fallacy trials [(I_F–I_NF)–(E_F–E_NF)], results in activation in right middle frontal gyrus (MNI: 48, 33, 18; T = 3.70) (BA 46) and superior parietal lobule (MNI: 27, −57, 45; T = 4.74) (BA 7) [also see the interaction effect of (I_F–I_NF)–(E_F–E_NF) in Table 2]. Condition specific parameter (beta) estimates show that the right fronto-parietal system is specifically responding to fallacies with implicit items, but not to fallacies with explicit items. The error bars represent the SEM. The activations reported survived an uncorrected voxel-level intensity threshold of p < 0.01 with a minimum cluster size of 10 contiguous voxels, which corresponds to a corrected p < 0.05 (using the AlphaSim program as described in Section Materials and Methods).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4202773&req=5

Figure 4: A statistical parametric map (SPM) rendered into standard stereotactic space. The quantification (explicit, implicit) by response (fallacious, non-fallacious) interaction, i.e., a comparison of the difference between implicit fallacy trials versus implicit non-fallacy trials with the difference between explicit fallacy trials versus explicit non-fallacy trials [(I_F–I_NF)–(E_F–E_NF)], results in activation in right middle frontal gyrus (MNI: 48, 33, 18; T = 3.70) (BA 46) and superior parietal lobule (MNI: 27, −57, 45; T = 4.74) (BA 7) [also see the interaction effect of (I_F–I_NF)–(E_F–E_NF) in Table 2]. Condition specific parameter (beta) estimates show that the right fronto-parietal system is specifically responding to fallacies with implicit items, but not to fallacies with explicit items. The error bars represent the SEM. The activations reported survived an uncorrected voxel-level intensity threshold of p < 0.01 with a minimum cluster size of 10 contiguous voxels, which corresponds to a corrected p < 0.05 (using the AlphaSim program as described in Section Materials and Methods).

Mentions: We next examined the interaction between response and quantification. The difference between fallacious and non-fallacious responses in implicit condition trials [(I_F–I_NF)–(E_F–E_NF)], resulted in greater activation in right middle frontal gyrus (BA 46), right superior parietal lobule (BA 7), and left fusiform gyrus (BA 37) than the difference between fallacious and non-fallacious responses in the explicit condition trials (Table 2; Figure 4). No regions of significant activation were found in the reverse direction [(I_NF–I_F)–(E_NF–E_F)].


Different neural systems contribute to semantic bias and conflict detection in the inclusion fallacy task.

Liang P, Goel V, Jia X, Li K - Front Hum Neurosci (2014)

A statistical parametric map (SPM) rendered into standard stereotactic space. The quantification (explicit, implicit) by response (fallacious, non-fallacious) interaction, i.e., a comparison of the difference between implicit fallacy trials versus implicit non-fallacy trials with the difference between explicit fallacy trials versus explicit non-fallacy trials [(I_F–I_NF)–(E_F–E_NF)], results in activation in right middle frontal gyrus (MNI: 48, 33, 18; T = 3.70) (BA 46) and superior parietal lobule (MNI: 27, −57, 45; T = 4.74) (BA 7) [also see the interaction effect of (I_F–I_NF)–(E_F–E_NF) in Table 2]. Condition specific parameter (beta) estimates show that the right fronto-parietal system is specifically responding to fallacies with implicit items, but not to fallacies with explicit items. The error bars represent the SEM. The activations reported survived an uncorrected voxel-level intensity threshold of p < 0.01 with a minimum cluster size of 10 contiguous voxels, which corresponds to a corrected p < 0.05 (using the AlphaSim program as described in Section Materials and Methods).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4202773&req=5

Figure 4: A statistical parametric map (SPM) rendered into standard stereotactic space. The quantification (explicit, implicit) by response (fallacious, non-fallacious) interaction, i.e., a comparison of the difference between implicit fallacy trials versus implicit non-fallacy trials with the difference between explicit fallacy trials versus explicit non-fallacy trials [(I_F–I_NF)–(E_F–E_NF)], results in activation in right middle frontal gyrus (MNI: 48, 33, 18; T = 3.70) (BA 46) and superior parietal lobule (MNI: 27, −57, 45; T = 4.74) (BA 7) [also see the interaction effect of (I_F–I_NF)–(E_F–E_NF) in Table 2]. Condition specific parameter (beta) estimates show that the right fronto-parietal system is specifically responding to fallacies with implicit items, but not to fallacies with explicit items. The error bars represent the SEM. The activations reported survived an uncorrected voxel-level intensity threshold of p < 0.01 with a minimum cluster size of 10 contiguous voxels, which corresponds to a corrected p < 0.05 (using the AlphaSim program as described in Section Materials and Methods).
Mentions: We next examined the interaction between response and quantification. The difference between fallacious and non-fallacious responses in implicit condition trials [(I_F–I_NF)–(E_F–E_NF)], resulted in greater activation in right middle frontal gyrus (BA 46), right superior parietal lobule (BA 7), and left fusiform gyrus (BA 37) than the difference between fallacious and non-fallacious responses in the explicit condition trials (Table 2; Figure 4). No regions of significant activation were found in the reverse direction [(I_NF–I_F)–(E_NF–E_F)].

Bottom Line: It was found that a left fronto-temporal system, along with a superior medial frontal system, was specifically activated in response to fallacious responses consistent with a semantic biasing of judgment explanation.A right fronto-parietal system was specifically recruited in response to detecting conflict associated with the heightened fallacy condition.These results are largely consistent with previous studies of reasoning fallacy and support a multiple systems model of reasoning.

View Article: PubMed Central - PubMed

Affiliation: Xuanwu Hospital, Capital Medical University , Beijing , China ; Brain Key Laboratory of Magnetic Resonance Imaging and Brain Informatics , Beijing , China.

ABSTRACT
The inclusion fallacy is a phenomenon in which generalization from a specific premise category to a more general conclusion category is considered stronger than a generalization to a specific conclusion category nested within the more general set. Such inferences violate rational norms and are part of the reasoning fallacy literature that provides interesting tasks to explore cognitive and neural basis of reasoning. To explore the functional neuroanatomy of the inclusion fallacy, we used a 2 × 2 factorial design, with factors for quantification (explicit and implicit) and response (fallacious and non-fallacious). It was found that a left fronto-temporal system, along with a superior medial frontal system, was specifically activated in response to fallacious responses consistent with a semantic biasing of judgment explanation. A right fronto-parietal system was specifically recruited in response to detecting conflict associated with the heightened fallacy condition. These results are largely consistent with previous studies of reasoning fallacy and support a multiple systems model of reasoning.

No MeSH data available.