Limits...
Real-world objects are more memorable than photographs of objects.

Snow JC, Skiba RM, Coleman TL, Berryhill ME - Front Hum Neurosci (2014)

Bottom Line: Surprisingly, recall and recognition performance was significantly better for real objects compared to colored photographs or line drawings (for which memory performance was equivalent).Again, recall and recognition performance was significantly better for the real objects than matched color photos of the same items.Our results highlight the importance of studying real-world object cognition and raise the potential for applied use in developing effective strategies for education, marketing, and further research on object-related cognition.

View Article: PubMed Central - PubMed

Affiliation: Cognitive and Brain Sciences Group, Department of Psychology, University of Nevada Reno, NV, USA.

ABSTRACT
Research studies in psychology typically use two-dimensional (2D) images of objects as proxies for real-world three-dimensional (3D) stimuli. There are, however, a number of important differences between real objects and images that could influence cognition and behavior. Although human memory has been studied extensively, only a handful of studies have used real objects in the context of memory and virtually none have directly compared memory for real objects vs. their 2D counterparts. Here we examined whether or not episodic memory is influenced by the format in which objects are displayed. We conducted two experiments asking participants to freely recall, and to recognize, a set of 44 common household objects. Critically, the exemplars were displayed to observers in one of three viewing conditions: real-world objects, colored photographs, or black and white line drawings. Stimuli were closely matched across conditions for size, orientation, and illumination. Surprisingly, recall and recognition performance was significantly better for real objects compared to colored photographs or line drawings (for which memory performance was equivalent). We replicated this pattern in a second experiment comparing memory for real objects vs. color photos, when the stimuli were matched for viewing angle across conditions. Again, recall and recognition performance was significantly better for the real objects than matched color photos of the same items. Taken together, our data suggest that real objects are more memorable than pictorial stimuli. Our results highlight the importance of studying real-world object cognition and raise the potential for applied use in developing effective strategies for education, marketing, and further research on object-related cognition.

No MeSH data available.


In Experiment 1 memory performance was better for real objects than line drawings or color photographs. (A) In the Test Phase, free recall (% correct) was better for stimuli in real object displays (blue bar) than as color photos (green bar) or line drawings (purple bar). Importantly, recall was not statistically different in the two image conditions, suggesting that the addition of color and shape cues was not sufficient to enhance memory performance. (B) Participants in the real object condition also made significantly fewer false recalls than those in the color photos and line drawing conditions. (C) A similar pattern was observed in the subsequent recognition task: recognition (% correct) was significantly better for stimuli shown as real objects than color photos or line drawings, and there was no difference in recognition for stimuli in the color photo vs. line drawing displays. (D) Signal detection analyses (mean d′) confirmed that observers who viewed real objects were more sensitive to the study objects than those in the two image conditions. Error bars represent **p < 0.001.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4202719&req=5

Figure 2: In Experiment 1 memory performance was better for real objects than line drawings or color photographs. (A) In the Test Phase, free recall (% correct) was better for stimuli in real object displays (blue bar) than as color photos (green bar) or line drawings (purple bar). Importantly, recall was not statistically different in the two image conditions, suggesting that the addition of color and shape cues was not sufficient to enhance memory performance. (B) Participants in the real object condition also made significantly fewer false recalls than those in the color photos and line drawing conditions. (C) A similar pattern was observed in the subsequent recognition task: recognition (% correct) was significantly better for stimuli shown as real objects than color photos or line drawings, and there was no difference in recognition for stimuli in the color photo vs. line drawing displays. (D) Signal detection analyses (mean d′) confirmed that observers who viewed real objects were more sensitive to the study objects than those in the two image conditions. Error bars represent **p < 0.001.

Mentions: In the free recall task, we observed a significant difference in memory performance for items in each Viewing Condition [F(2, 76) = 11.277, p < 0.001, η2 = 0.229]. Observers' ability to recall real objects (Mean = 49.04%, SD = 13.19%) was significantly better than for color photograph (Mean = 36.62%, SD = 11.26%) or line-drawing displays (Mean = 34.27%, SD = 11.71%); p = 0.001 and p < 0.001, respectively; Figure 2A). Interestingly, recall performance for color photographs was not significantly different from that of line-drawings (p = 0.759), suggesting that additional monocular shape and color cues were not sufficient to facilitate object memory.


Real-world objects are more memorable than photographs of objects.

Snow JC, Skiba RM, Coleman TL, Berryhill ME - Front Hum Neurosci (2014)

In Experiment 1 memory performance was better for real objects than line drawings or color photographs. (A) In the Test Phase, free recall (% correct) was better for stimuli in real object displays (blue bar) than as color photos (green bar) or line drawings (purple bar). Importantly, recall was not statistically different in the two image conditions, suggesting that the addition of color and shape cues was not sufficient to enhance memory performance. (B) Participants in the real object condition also made significantly fewer false recalls than those in the color photos and line drawing conditions. (C) A similar pattern was observed in the subsequent recognition task: recognition (% correct) was significantly better for stimuli shown as real objects than color photos or line drawings, and there was no difference in recognition for stimuli in the color photo vs. line drawing displays. (D) Signal detection analyses (mean d′) confirmed that observers who viewed real objects were more sensitive to the study objects than those in the two image conditions. Error bars represent **p < 0.001.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4202719&req=5

Figure 2: In Experiment 1 memory performance was better for real objects than line drawings or color photographs. (A) In the Test Phase, free recall (% correct) was better for stimuli in real object displays (blue bar) than as color photos (green bar) or line drawings (purple bar). Importantly, recall was not statistically different in the two image conditions, suggesting that the addition of color and shape cues was not sufficient to enhance memory performance. (B) Participants in the real object condition also made significantly fewer false recalls than those in the color photos and line drawing conditions. (C) A similar pattern was observed in the subsequent recognition task: recognition (% correct) was significantly better for stimuli shown as real objects than color photos or line drawings, and there was no difference in recognition for stimuli in the color photo vs. line drawing displays. (D) Signal detection analyses (mean d′) confirmed that observers who viewed real objects were more sensitive to the study objects than those in the two image conditions. Error bars represent **p < 0.001.
Mentions: In the free recall task, we observed a significant difference in memory performance for items in each Viewing Condition [F(2, 76) = 11.277, p < 0.001, η2 = 0.229]. Observers' ability to recall real objects (Mean = 49.04%, SD = 13.19%) was significantly better than for color photograph (Mean = 36.62%, SD = 11.26%) or line-drawing displays (Mean = 34.27%, SD = 11.71%); p = 0.001 and p < 0.001, respectively; Figure 2A). Interestingly, recall performance for color photographs was not significantly different from that of line-drawings (p = 0.759), suggesting that additional monocular shape and color cues were not sufficient to facilitate object memory.

Bottom Line: Surprisingly, recall and recognition performance was significantly better for real objects compared to colored photographs or line drawings (for which memory performance was equivalent).Again, recall and recognition performance was significantly better for the real objects than matched color photos of the same items.Our results highlight the importance of studying real-world object cognition and raise the potential for applied use in developing effective strategies for education, marketing, and further research on object-related cognition.

View Article: PubMed Central - PubMed

Affiliation: Cognitive and Brain Sciences Group, Department of Psychology, University of Nevada Reno, NV, USA.

ABSTRACT
Research studies in psychology typically use two-dimensional (2D) images of objects as proxies for real-world three-dimensional (3D) stimuli. There are, however, a number of important differences between real objects and images that could influence cognition and behavior. Although human memory has been studied extensively, only a handful of studies have used real objects in the context of memory and virtually none have directly compared memory for real objects vs. their 2D counterparts. Here we examined whether or not episodic memory is influenced by the format in which objects are displayed. We conducted two experiments asking participants to freely recall, and to recognize, a set of 44 common household objects. Critically, the exemplars were displayed to observers in one of three viewing conditions: real-world objects, colored photographs, or black and white line drawings. Stimuli were closely matched across conditions for size, orientation, and illumination. Surprisingly, recall and recognition performance was significantly better for real objects compared to colored photographs or line drawings (for which memory performance was equivalent). We replicated this pattern in a second experiment comparing memory for real objects vs. color photos, when the stimuli were matched for viewing angle across conditions. Again, recall and recognition performance was significantly better for the real objects than matched color photos of the same items. Taken together, our data suggest that real objects are more memorable than pictorial stimuli. Our results highlight the importance of studying real-world object cognition and raise the potential for applied use in developing effective strategies for education, marketing, and further research on object-related cognition.

No MeSH data available.