Limits...
Compartment-specific importance of glutathione during abiotic and biotic stress.

Zechmann B - Front Plant Sci (2014)

Bottom Line: Due to technical advances in the visualization of glutathione and the redox state through microscopical methods some progress was made in the last few years in studying the importance of subcellular glutathione contents during stress conditions in plants.The data will be discussed in connection with the subcellular accumulation of ROS during these conditions and glutathione synthesis which are both highly compartment specific (e.g., glutathione synthesis takes place in chloroplasts and the cytosol).Thus this review will reveal the compartment-specific importance of glutathione during abiotic and biotic stress conditions.

View Article: PubMed Central - PubMed

Affiliation: Center for Microscopy and Imaging, Baylor University , Waco, TX, USA.

ABSTRACT
The tripeptide thiol glutathione (γ-L-glutamyl-L-cysteinyl-glycine) is the most important sulfur containing antioxidant in plants and essential for plant defense against abiotic and biotic stress conditions. It is involved in the detoxification of reactive oxygen species (ROS), redox signaling, the modulation of defense gene expression, and the regulation of enzymatic activities. Even though changes in glutathione contents are well documented in plants and its roles in plant defense are well established, still too little is known about its compartment-specific importance during abiotic and biotic stress conditions. Due to technical advances in the visualization of glutathione and the redox state through microscopical methods some progress was made in the last few years in studying the importance of subcellular glutathione contents during stress conditions in plants. This review summarizes the data available on compartment-specific importance of glutathione in the protection against abiotic and biotic stress conditions such as high light stress, exposure to cadmium, drought, and pathogen attack (Pseudomonas, Botrytis, tobacco mosaic virus). The data will be discussed in connection with the subcellular accumulation of ROS during these conditions and glutathione synthesis which are both highly compartment specific (e.g., glutathione synthesis takes place in chloroplasts and the cytosol). Thus this review will reveal the compartment-specific importance of glutathione during abiotic and biotic stress conditions.

No MeSH data available.


Related in: MedlinePlus

Compartment-specific production of reactive oxygen species (ROS) induced by different stress conditions and possible detoxification and signaling pathways involving ascorbate (Asc) and glutathione (GSH) and ROS. C, chloroplast; M, mitochondrium; N, nucleus; Px, peroxisome; V, vacuole.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4202713&req=5

Figure 2: Compartment-specific production of reactive oxygen species (ROS) induced by different stress conditions and possible detoxification and signaling pathways involving ascorbate (Asc) and glutathione (GSH) and ROS. C, chloroplast; M, mitochondrium; N, nucleus; Px, peroxisome; V, vacuole.

Mentions: Glutathione degradation is carried out by γ-glutamyl transferase/transpeptidase (GGT, EC 2.3.2.2) which promotes the cleavage of glutamate from glutathione in vacuoles and the apoplast (Ohkama-Ohtsu et al., 2007a,b; Tolin et al., 2013). In Arabidopsis, GGT1 and GGT2 are associated with the cell wall and the plasma membrane, respectively, whereas GGT3 does not seem to have a function, and GGT4 occurs in vacuoles (Ohkama-Ohtsu et al., 2007a,b; Ferretti et al., 2009; Destro et al., 2011; Tolin et al., 2013). A further pathway of glutathione degradation is the removal of glycine from glutathione which is carried out by carboxypeptidase located inside vacuoles (Wolf et al., 1996). Metabolization of the remaining dipeptides is then carried out by dipeptidases. Further pathways could involve the degradation of glutathione by γ-glutamyl-cyclotransferase (EC 2.3.2.4) via 5-oxoproline, which would results in the production of free glutamate (Martin and Slovin, 2000; Ohkama-Ohtsu et al., 2008) or by phytochelatin synthase (also known as glutathione γ-glutamyl-cysteinyltransferase, EC 2.3.2.15) which could facilitate the degradation of glutathione in situations when conjugated glutathione accumulates in the cytosol such as exposure of plants to heavy metals (Grzam et al., 2006; Blum et al., 2007, 2010). As these pathways take place in the cytosol they represent an alternative pathway of glutathione degradation besides the ones in the vacuole and the apoplast (Noctor et al., 2011). As plants depend on the protection of glutathione and as it is also involved in (redox) signaling and the activation of defense genes, its homeostasis in different organs, tissues, and organelles is essential for plant defense and depends on the control of a complex network of metabolic and environmental factors (Noctor, 2006; Foyer and Noctor, 2009, 2011; Miller et al., 2010; Noctor et al., 2012; Szarka et al., 2012). Considering that stress situations affect cell compartments differently (Figure 2) and that glutathione metabolism is highly compartment specific it is essential to investigate subcellular glutathione levels in order to obtain a deeper insight into how glutathione is involved in plant defense.


Compartment-specific importance of glutathione during abiotic and biotic stress.

Zechmann B - Front Plant Sci (2014)

Compartment-specific production of reactive oxygen species (ROS) induced by different stress conditions and possible detoxification and signaling pathways involving ascorbate (Asc) and glutathione (GSH) and ROS. C, chloroplast; M, mitochondrium; N, nucleus; Px, peroxisome; V, vacuole.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4202713&req=5

Figure 2: Compartment-specific production of reactive oxygen species (ROS) induced by different stress conditions and possible detoxification and signaling pathways involving ascorbate (Asc) and glutathione (GSH) and ROS. C, chloroplast; M, mitochondrium; N, nucleus; Px, peroxisome; V, vacuole.
Mentions: Glutathione degradation is carried out by γ-glutamyl transferase/transpeptidase (GGT, EC 2.3.2.2) which promotes the cleavage of glutamate from glutathione in vacuoles and the apoplast (Ohkama-Ohtsu et al., 2007a,b; Tolin et al., 2013). In Arabidopsis, GGT1 and GGT2 are associated with the cell wall and the plasma membrane, respectively, whereas GGT3 does not seem to have a function, and GGT4 occurs in vacuoles (Ohkama-Ohtsu et al., 2007a,b; Ferretti et al., 2009; Destro et al., 2011; Tolin et al., 2013). A further pathway of glutathione degradation is the removal of glycine from glutathione which is carried out by carboxypeptidase located inside vacuoles (Wolf et al., 1996). Metabolization of the remaining dipeptides is then carried out by dipeptidases. Further pathways could involve the degradation of glutathione by γ-glutamyl-cyclotransferase (EC 2.3.2.4) via 5-oxoproline, which would results in the production of free glutamate (Martin and Slovin, 2000; Ohkama-Ohtsu et al., 2008) or by phytochelatin synthase (also known as glutathione γ-glutamyl-cysteinyltransferase, EC 2.3.2.15) which could facilitate the degradation of glutathione in situations when conjugated glutathione accumulates in the cytosol such as exposure of plants to heavy metals (Grzam et al., 2006; Blum et al., 2007, 2010). As these pathways take place in the cytosol they represent an alternative pathway of glutathione degradation besides the ones in the vacuole and the apoplast (Noctor et al., 2011). As plants depend on the protection of glutathione and as it is also involved in (redox) signaling and the activation of defense genes, its homeostasis in different organs, tissues, and organelles is essential for plant defense and depends on the control of a complex network of metabolic and environmental factors (Noctor, 2006; Foyer and Noctor, 2009, 2011; Miller et al., 2010; Noctor et al., 2012; Szarka et al., 2012). Considering that stress situations affect cell compartments differently (Figure 2) and that glutathione metabolism is highly compartment specific it is essential to investigate subcellular glutathione levels in order to obtain a deeper insight into how glutathione is involved in plant defense.

Bottom Line: Due to technical advances in the visualization of glutathione and the redox state through microscopical methods some progress was made in the last few years in studying the importance of subcellular glutathione contents during stress conditions in plants.The data will be discussed in connection with the subcellular accumulation of ROS during these conditions and glutathione synthesis which are both highly compartment specific (e.g., glutathione synthesis takes place in chloroplasts and the cytosol).Thus this review will reveal the compartment-specific importance of glutathione during abiotic and biotic stress conditions.

View Article: PubMed Central - PubMed

Affiliation: Center for Microscopy and Imaging, Baylor University , Waco, TX, USA.

ABSTRACT
The tripeptide thiol glutathione (γ-L-glutamyl-L-cysteinyl-glycine) is the most important sulfur containing antioxidant in plants and essential for plant defense against abiotic and biotic stress conditions. It is involved in the detoxification of reactive oxygen species (ROS), redox signaling, the modulation of defense gene expression, and the regulation of enzymatic activities. Even though changes in glutathione contents are well documented in plants and its roles in plant defense are well established, still too little is known about its compartment-specific importance during abiotic and biotic stress conditions. Due to technical advances in the visualization of glutathione and the redox state through microscopical methods some progress was made in the last few years in studying the importance of subcellular glutathione contents during stress conditions in plants. This review summarizes the data available on compartment-specific importance of glutathione in the protection against abiotic and biotic stress conditions such as high light stress, exposure to cadmium, drought, and pathogen attack (Pseudomonas, Botrytis, tobacco mosaic virus). The data will be discussed in connection with the subcellular accumulation of ROS during these conditions and glutathione synthesis which are both highly compartment specific (e.g., glutathione synthesis takes place in chloroplasts and the cytosol). Thus this review will reveal the compartment-specific importance of glutathione during abiotic and biotic stress conditions.

No MeSH data available.


Related in: MedlinePlus