Limits...
Small and Long Regulatory RNAs in the Immune System and Immune Diseases.

Stachurska A, Zorro MM, van der Sijde MR, Withoff S - Front Immunol (2014)

Bottom Line: Until recently, it was thought that the dysregulation was governed by changes in the binding or activity of a class of proteins called transcription factors.However, the discovery of micro-RNAs and recent descriptions of long non-coding RNAs (lncRNAs) have given enormous momentum to a whole new field of biology: the regulatory RNAs.In this review, we describe these two classes of regulatory RNAs and summarize what is known about how they regulate aspects of the adaptive and innate immune systems.

View Article: PubMed Central - PubMed

Affiliation: Department of Genetics, University Medical Center Groningen, University of Groningen , Groningen , Netherlands.

ABSTRACT
Cellular differentiation is regulated on the level of gene expression, and it is known that dysregulation of gene expression can lead to deficiencies in differentiation that contribute to a variety of diseases, particularly of the immune system. Until recently, it was thought that the dysregulation was governed by changes in the binding or activity of a class of proteins called transcription factors. However, the discovery of micro-RNAs and recent descriptions of long non-coding RNAs (lncRNAs) have given enormous momentum to a whole new field of biology: the regulatory RNAs. In this review, we describe these two classes of regulatory RNAs and summarize what is known about how they regulate aspects of the adaptive and innate immune systems. Finally, we describe what is known about the involvement of micro-RNAs and lncRNAs in three different autoimmune diseases (celiac disease, inflammatory bowel disease, and multiple sclerosis).

No MeSH data available.


Related in: MedlinePlus

MiRNAs and lncRNAs influence immune cell fate and function. MiRNAs and lncRNAs were shown to modulate development and function the immune system. LncRNAs and selected miRNAs that are discussed in this review are depicted.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4202709&req=5

Figure 4: MiRNAs and lncRNAs influence immune cell fate and function. MiRNAs and lncRNAs were shown to modulate development and function the immune system. LncRNAs and selected miRNAs that are discussed in this review are depicted.

Mentions: The innate immune system includes myeloid cells derived from hematopoietic stem cells (HSCs) and myeloid progenitors. These cells give rise to monocytes, which can develop into macrophages and DCs, and to granulocytes (neutrophils, eosinophils, basophils) through a series of developmental stages (myeloblast, promyelocyte, myelocyte, metamyelocyte, band cell or monoblast, and promonocyte) (Figure 4). One of the first studies of miRNA expression in normal human granulocytes reported sets of miRNAs that were subject to upregulation or downregulation at discrete maturation stages in neutrophil development. Although the majority of miRNA family members showed coordinated expression patterns, the expression of some miRNAs in the same cluster is not always synchronized. For example, the miR-17-92/oncomir-1 cluster encompasses six miRNAs (miR-17, -18a, -19a, -20a, -19b-1, -92a-1). Among the cluster’s targets are antitumor, pro-apoptotic, and tumor suppressor proteins. HSCs and early progenitors in the BM express high levels of miRNAs from this cluster, whereas their expression is reduced during myeloid and lymphoid differentiation (49, 50). Of this cluster, miR-20a and miR-92 are downregulated in metamyelocytes, miR-18a, miR-19a and miR-19b are downregulated in neutrophils, while miR17-5p gradually decreased from myeloblasts in the subsequent stages of development (51). In miR-223 KO mice, it was shown that miR-223 deletion leads to an increase in the number of granulocyte progenitors and neutrophil hyperactivity, suggesting that miR-223 acts as a crucial regulator of granulocyte production and the inflammatory response (52).


Small and Long Regulatory RNAs in the Immune System and Immune Diseases.

Stachurska A, Zorro MM, van der Sijde MR, Withoff S - Front Immunol (2014)

MiRNAs and lncRNAs influence immune cell fate and function. MiRNAs and lncRNAs were shown to modulate development and function the immune system. LncRNAs and selected miRNAs that are discussed in this review are depicted.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4202709&req=5

Figure 4: MiRNAs and lncRNAs influence immune cell fate and function. MiRNAs and lncRNAs were shown to modulate development and function the immune system. LncRNAs and selected miRNAs that are discussed in this review are depicted.
Mentions: The innate immune system includes myeloid cells derived from hematopoietic stem cells (HSCs) and myeloid progenitors. These cells give rise to monocytes, which can develop into macrophages and DCs, and to granulocytes (neutrophils, eosinophils, basophils) through a series of developmental stages (myeloblast, promyelocyte, myelocyte, metamyelocyte, band cell or monoblast, and promonocyte) (Figure 4). One of the first studies of miRNA expression in normal human granulocytes reported sets of miRNAs that were subject to upregulation or downregulation at discrete maturation stages in neutrophil development. Although the majority of miRNA family members showed coordinated expression patterns, the expression of some miRNAs in the same cluster is not always synchronized. For example, the miR-17-92/oncomir-1 cluster encompasses six miRNAs (miR-17, -18a, -19a, -20a, -19b-1, -92a-1). Among the cluster’s targets are antitumor, pro-apoptotic, and tumor suppressor proteins. HSCs and early progenitors in the BM express high levels of miRNAs from this cluster, whereas their expression is reduced during myeloid and lymphoid differentiation (49, 50). Of this cluster, miR-20a and miR-92 are downregulated in metamyelocytes, miR-18a, miR-19a and miR-19b are downregulated in neutrophils, while miR17-5p gradually decreased from myeloblasts in the subsequent stages of development (51). In miR-223 KO mice, it was shown that miR-223 deletion leads to an increase in the number of granulocyte progenitors and neutrophil hyperactivity, suggesting that miR-223 acts as a crucial regulator of granulocyte production and the inflammatory response (52).

Bottom Line: Until recently, it was thought that the dysregulation was governed by changes in the binding or activity of a class of proteins called transcription factors.However, the discovery of micro-RNAs and recent descriptions of long non-coding RNAs (lncRNAs) have given enormous momentum to a whole new field of biology: the regulatory RNAs.In this review, we describe these two classes of regulatory RNAs and summarize what is known about how they regulate aspects of the adaptive and innate immune systems.

View Article: PubMed Central - PubMed

Affiliation: Department of Genetics, University Medical Center Groningen, University of Groningen , Groningen , Netherlands.

ABSTRACT
Cellular differentiation is regulated on the level of gene expression, and it is known that dysregulation of gene expression can lead to deficiencies in differentiation that contribute to a variety of diseases, particularly of the immune system. Until recently, it was thought that the dysregulation was governed by changes in the binding or activity of a class of proteins called transcription factors. However, the discovery of micro-RNAs and recent descriptions of long non-coding RNAs (lncRNAs) have given enormous momentum to a whole new field of biology: the regulatory RNAs. In this review, we describe these two classes of regulatory RNAs and summarize what is known about how they regulate aspects of the adaptive and innate immune systems. Finally, we describe what is known about the involvement of micro-RNAs and lncRNAs in three different autoimmune diseases (celiac disease, inflammatory bowel disease, and multiple sclerosis).

No MeSH data available.


Related in: MedlinePlus