Limits...
WAVE3-NFκB interplay is essential for the survival and invasion of cancer cells.

Davuluri G, Augoff K, Schiemann WP, Plow EF, Sossey-Alaoui K - PLoS ONE (2014)

Bottom Line: Mechanistically, we found that loss of WAVE3 in cancer cells leads to inhibition of NFκB signaling as a result of a decrease in the nuclear translocation of NFκB and therefore loss of activation of NFκB target genes.Conversely, overexpression of WAVE3 was sufficient to enhance NFκB activity.Our results identify a novel function of WAVE3 in NFκB signaling, where its activity is essential for the regulation of invadopodia and ECM degradation.

View Article: PubMed Central - PubMed

Affiliation: Department of Molecular Cardiology, Cleveland Clinic Lerner Institute, Cleveland, Ohio, United States of America.

ABSTRACT
The WAVE3 cytoskeletal protein promotes cancer invasion and metastasis. We have shown that the WAVE3-mediated activation of cancer cell invasion is due, in part, to its regulation of expression and activity of key metalloproteinases (MMPs), including MMP9, which is centrally involved in invadopodia-mediated degradation of the extracellular matrix (ECM). MMP9 is also a major NFκB target gene, suggesting a potential linkage of WAVE3 to this pathway, which we sought to investigate. Mechanistically, we found that loss of WAVE3 in cancer cells leads to inhibition of NFκB signaling as a result of a decrease in the nuclear translocation of NFκB and therefore loss of activation of NFκB target genes. Conversely, overexpression of WAVE3 was sufficient to enhance NFκB activity. Both pharmacologic and genetic manipulations of NFκB effector molecules show that the biological consequence of loss of WAVE3 function in the NFκB pathway result the inhibition of invadopodia formation and ECM degradation by cancer cells, and these changes are a consequence of decreased MMP9 expression and activity. Loss of WAVE3 also sensitized cancer cells to apoptosis and cell death driven by TNFα, through the inhibition of the AKT pro-survival pathway. Our results identify a novel function of WAVE3 in NFκB signaling, where its activity is essential for the regulation of invadopodia and ECM degradation. Therefore, targeted therapeutic inhibition of WAVE3 will sensitize cancer cells to apoptosis and cell death, and suppress cancer invasion and metastasis.

Show MeSH

Related in: MedlinePlus

WAVE3 is required for NFκB activation.(A) Luciferase-based NFκB reporter assay in MDA-MB-231 cells with stable transfection of a non-targeting shRNA (Ctrl-sh) or the WAVE3-trageting shRNA (sh-W3). (Inset) Western blot analysis of protein lysates of cells described in (A) with anti-WAVE3 antibody. β-Actin was used as a loading control. (*, p<0.05). (B) Western blot analysis with the indicated antibodies of protein lysates from Ctrl-sh MDA-MB-231 and two different shWAVE3-derived clones (sh-W3-1 and sh-W3-2), before and after TNFα treatment (50 ng/μl for 15 min). The numbers below the p-p65 and WAVE3 panels indicate the fold change of p-p65 and WAVE3 levels, respectively, as compared to the untreated Ctrl-sh cells. (C) Quantification of p-p65 levels in the indicated conditions. (D) Western blot analysis with p65 antibody of the nuclear fraction lysates from the Ctrl-sh and the sh-W3 MDA-MB-231 cells, with or without TNFα treatment. H2b was used as a loading control for the nuclear fraction. The numbers below the H2b panel indicate the fold change p65 levels with respect to the untreated Ctrl-sh cells. (E) Immuno-staining for nuclear translocation (white arrows) of p65 protein (Red) in Ctrl-sh and shWAVE3 MDA-MB-231 cells. Cells nuclei are counter-stained with DAPI (Blue). (F) Quantification of p65 nuclear staining. All data are representative of 3 independent experiments, or are the mean ± SD (n = 3; *, p <0.05; Student's t-test)
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4199728&req=5

pone-0110627-g001: WAVE3 is required for NFκB activation.(A) Luciferase-based NFκB reporter assay in MDA-MB-231 cells with stable transfection of a non-targeting shRNA (Ctrl-sh) or the WAVE3-trageting shRNA (sh-W3). (Inset) Western blot analysis of protein lysates of cells described in (A) with anti-WAVE3 antibody. β-Actin was used as a loading control. (*, p<0.05). (B) Western blot analysis with the indicated antibodies of protein lysates from Ctrl-sh MDA-MB-231 and two different shWAVE3-derived clones (sh-W3-1 and sh-W3-2), before and after TNFα treatment (50 ng/μl for 15 min). The numbers below the p-p65 and WAVE3 panels indicate the fold change of p-p65 and WAVE3 levels, respectively, as compared to the untreated Ctrl-sh cells. (C) Quantification of p-p65 levels in the indicated conditions. (D) Western blot analysis with p65 antibody of the nuclear fraction lysates from the Ctrl-sh and the sh-W3 MDA-MB-231 cells, with or without TNFα treatment. H2b was used as a loading control for the nuclear fraction. The numbers below the H2b panel indicate the fold change p65 levels with respect to the untreated Ctrl-sh cells. (E) Immuno-staining for nuclear translocation (white arrows) of p65 protein (Red) in Ctrl-sh and shWAVE3 MDA-MB-231 cells. Cells nuclei are counter-stained with DAPI (Blue). (F) Quantification of p65 nuclear staining. All data are representative of 3 independent experiments, or are the mean ± SD (n = 3; *, p <0.05; Student's t-test)

Mentions: To document the interplay between WAVE3 and NFκB signaling, we used a luciferase-based NFκB reporter assay to assess changes in NFκB activity in the presence and absence of WAVE3. As a positive control for NFκB activation, we used TNFα, a known stimulator of NFκB signaling. We found that TNFα treatment of MDA-MB-231 or BT549 cells increased NFκB activity by at least 3-fold in both cell lines as compared to unstimulated cells (Fig. S1 in File S1). However, in the WAVE3-knockdown (sh-W3) cells (Fig. 1A inset), the luciferase activity, and therefore NFκB activity, was reduced by at least 4-fold compared to MDA-MB-231 transfected with control non-targeting shRNA (Ctrl-sh) (Fig. 1A). Thus, WAVE3 was required for NFκB activity. This inhibition of NFκB activity was specific to the loss of WAVE3 since knockdown of WAVE2 expression, another WAVE isoform, had no effect on of NFκB activity (Fig. S2 in File S1).


WAVE3-NFκB interplay is essential for the survival and invasion of cancer cells.

Davuluri G, Augoff K, Schiemann WP, Plow EF, Sossey-Alaoui K - PLoS ONE (2014)

WAVE3 is required for NFκB activation.(A) Luciferase-based NFκB reporter assay in MDA-MB-231 cells with stable transfection of a non-targeting shRNA (Ctrl-sh) or the WAVE3-trageting shRNA (sh-W3). (Inset) Western blot analysis of protein lysates of cells described in (A) with anti-WAVE3 antibody. β-Actin was used as a loading control. (*, p<0.05). (B) Western blot analysis with the indicated antibodies of protein lysates from Ctrl-sh MDA-MB-231 and two different shWAVE3-derived clones (sh-W3-1 and sh-W3-2), before and after TNFα treatment (50 ng/μl for 15 min). The numbers below the p-p65 and WAVE3 panels indicate the fold change of p-p65 and WAVE3 levels, respectively, as compared to the untreated Ctrl-sh cells. (C) Quantification of p-p65 levels in the indicated conditions. (D) Western blot analysis with p65 antibody of the nuclear fraction lysates from the Ctrl-sh and the sh-W3 MDA-MB-231 cells, with or without TNFα treatment. H2b was used as a loading control for the nuclear fraction. The numbers below the H2b panel indicate the fold change p65 levels with respect to the untreated Ctrl-sh cells. (E) Immuno-staining for nuclear translocation (white arrows) of p65 protein (Red) in Ctrl-sh and shWAVE3 MDA-MB-231 cells. Cells nuclei are counter-stained with DAPI (Blue). (F) Quantification of p65 nuclear staining. All data are representative of 3 independent experiments, or are the mean ± SD (n = 3; *, p <0.05; Student's t-test)
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4199728&req=5

pone-0110627-g001: WAVE3 is required for NFκB activation.(A) Luciferase-based NFκB reporter assay in MDA-MB-231 cells with stable transfection of a non-targeting shRNA (Ctrl-sh) or the WAVE3-trageting shRNA (sh-W3). (Inset) Western blot analysis of protein lysates of cells described in (A) with anti-WAVE3 antibody. β-Actin was used as a loading control. (*, p<0.05). (B) Western blot analysis with the indicated antibodies of protein lysates from Ctrl-sh MDA-MB-231 and two different shWAVE3-derived clones (sh-W3-1 and sh-W3-2), before and after TNFα treatment (50 ng/μl for 15 min). The numbers below the p-p65 and WAVE3 panels indicate the fold change of p-p65 and WAVE3 levels, respectively, as compared to the untreated Ctrl-sh cells. (C) Quantification of p-p65 levels in the indicated conditions. (D) Western blot analysis with p65 antibody of the nuclear fraction lysates from the Ctrl-sh and the sh-W3 MDA-MB-231 cells, with or without TNFα treatment. H2b was used as a loading control for the nuclear fraction. The numbers below the H2b panel indicate the fold change p65 levels with respect to the untreated Ctrl-sh cells. (E) Immuno-staining for nuclear translocation (white arrows) of p65 protein (Red) in Ctrl-sh and shWAVE3 MDA-MB-231 cells. Cells nuclei are counter-stained with DAPI (Blue). (F) Quantification of p65 nuclear staining. All data are representative of 3 independent experiments, or are the mean ± SD (n = 3; *, p <0.05; Student's t-test)
Mentions: To document the interplay between WAVE3 and NFκB signaling, we used a luciferase-based NFκB reporter assay to assess changes in NFκB activity in the presence and absence of WAVE3. As a positive control for NFκB activation, we used TNFα, a known stimulator of NFκB signaling. We found that TNFα treatment of MDA-MB-231 or BT549 cells increased NFκB activity by at least 3-fold in both cell lines as compared to unstimulated cells (Fig. S1 in File S1). However, in the WAVE3-knockdown (sh-W3) cells (Fig. 1A inset), the luciferase activity, and therefore NFκB activity, was reduced by at least 4-fold compared to MDA-MB-231 transfected with control non-targeting shRNA (Ctrl-sh) (Fig. 1A). Thus, WAVE3 was required for NFκB activity. This inhibition of NFκB activity was specific to the loss of WAVE3 since knockdown of WAVE2 expression, another WAVE isoform, had no effect on of NFκB activity (Fig. S2 in File S1).

Bottom Line: Mechanistically, we found that loss of WAVE3 in cancer cells leads to inhibition of NFκB signaling as a result of a decrease in the nuclear translocation of NFκB and therefore loss of activation of NFκB target genes.Conversely, overexpression of WAVE3 was sufficient to enhance NFκB activity.Our results identify a novel function of WAVE3 in NFκB signaling, where its activity is essential for the regulation of invadopodia and ECM degradation.

View Article: PubMed Central - PubMed

Affiliation: Department of Molecular Cardiology, Cleveland Clinic Lerner Institute, Cleveland, Ohio, United States of America.

ABSTRACT
The WAVE3 cytoskeletal protein promotes cancer invasion and metastasis. We have shown that the WAVE3-mediated activation of cancer cell invasion is due, in part, to its regulation of expression and activity of key metalloproteinases (MMPs), including MMP9, which is centrally involved in invadopodia-mediated degradation of the extracellular matrix (ECM). MMP9 is also a major NFκB target gene, suggesting a potential linkage of WAVE3 to this pathway, which we sought to investigate. Mechanistically, we found that loss of WAVE3 in cancer cells leads to inhibition of NFκB signaling as a result of a decrease in the nuclear translocation of NFκB and therefore loss of activation of NFκB target genes. Conversely, overexpression of WAVE3 was sufficient to enhance NFκB activity. Both pharmacologic and genetic manipulations of NFκB effector molecules show that the biological consequence of loss of WAVE3 function in the NFκB pathway result the inhibition of invadopodia formation and ECM degradation by cancer cells, and these changes are a consequence of decreased MMP9 expression and activity. Loss of WAVE3 also sensitized cancer cells to apoptosis and cell death driven by TNFα, through the inhibition of the AKT pro-survival pathway. Our results identify a novel function of WAVE3 in NFκB signaling, where its activity is essential for the regulation of invadopodia and ECM degradation. Therefore, targeted therapeutic inhibition of WAVE3 will sensitize cancer cells to apoptosis and cell death, and suppress cancer invasion and metastasis.

Show MeSH
Related in: MedlinePlus