Limits...
Assessment of ovarian cancer spheroid attachment and invasion of mesothelial cells in real time.

Bilandzic M, Stenvers KL - J Vis Exp (2014)

Bottom Line: Monolayer cultures do not accurately model the behaviors of cancer cells within a nonadherent environment, as cancer cells inherently aggregate into multicellular structures which contribute to the metastatic process by attaching to and invading the peritoneal lining to form secondary tumors.To mimic the peritoneal microenvironment encountered by tumor cells in vivo, a spheroid-mesothelial co-culture model was established in which preformed spheroids are plated on top of a human mesothelial cell monolayer, formed over an extracellular matrix barrier.This approach allows for the continuous measurement of invasion over long periods of time, which has several advantages over traditional endpoint assays and more laborious real time microscopy image analyses.

View Article: PubMed Central - PubMed

Affiliation: Reproductive Development and Cancer Laboratory, MIMR-PHI Institute of Medical Research; maree.bilandzic@princehenrys.org.

ABSTRACT
Ovarian cancers metastasize by shedding into the peritoneal fluid and dispersing to distal sites within the peritoneum. Monolayer cultures do not accurately model the behaviors of cancer cells within a nonadherent environment, as cancer cells inherently aggregate into multicellular structures which contribute to the metastatic process by attaching to and invading the peritoneal lining to form secondary tumors. To model this important stage of ovarian cancer metastasis, multicellular aggregates, or spheroids, can be generated from established ovarian cancer cell lines maintained under nonadherent conditions. To mimic the peritoneal microenvironment encountered by tumor cells in vivo, a spheroid-mesothelial co-culture model was established in which preformed spheroids are plated on top of a human mesothelial cell monolayer, formed over an extracellular matrix barrier. Methods were then developed using a real-time cell analyzer to conduct quantitative real time measurements of the invasive capacity of different ovarian cancer cell lines grown as spheroids. This approach allows for the continuous measurement of invasion over long periods of time, which has several advantages over traditional endpoint assays and more laborious real time microscopy image analyses. In short, this method enables a rapid, determination of factors which regulate the interactions between ovarian cancer spheroid cells invading through mesothelial and matrix barriers over time.

Show MeSH

Related in: MedlinePlus

Play Video
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4199467&req=5


Assessment of ovarian cancer spheroid attachment and invasion of mesothelial cells in real time.

Bilandzic M, Stenvers KL - J Vis Exp (2014)

© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4199467&req=5

Bottom Line: Monolayer cultures do not accurately model the behaviors of cancer cells within a nonadherent environment, as cancer cells inherently aggregate into multicellular structures which contribute to the metastatic process by attaching to and invading the peritoneal lining to form secondary tumors.To mimic the peritoneal microenvironment encountered by tumor cells in vivo, a spheroid-mesothelial co-culture model was established in which preformed spheroids are plated on top of a human mesothelial cell monolayer, formed over an extracellular matrix barrier.This approach allows for the continuous measurement of invasion over long periods of time, which has several advantages over traditional endpoint assays and more laborious real time microscopy image analyses.

View Article: PubMed Central - PubMed

Affiliation: Reproductive Development and Cancer Laboratory, MIMR-PHI Institute of Medical Research; maree.bilandzic@princehenrys.org.

ABSTRACT
Ovarian cancers metastasize by shedding into the peritoneal fluid and dispersing to distal sites within the peritoneum. Monolayer cultures do not accurately model the behaviors of cancer cells within a nonadherent environment, as cancer cells inherently aggregate into multicellular structures which contribute to the metastatic process by attaching to and invading the peritoneal lining to form secondary tumors. To model this important stage of ovarian cancer metastasis, multicellular aggregates, or spheroids, can be generated from established ovarian cancer cell lines maintained under nonadherent conditions. To mimic the peritoneal microenvironment encountered by tumor cells in vivo, a spheroid-mesothelial co-culture model was established in which preformed spheroids are plated on top of a human mesothelial cell monolayer, formed over an extracellular matrix barrier. Methods were then developed using a real-time cell analyzer to conduct quantitative real time measurements of the invasive capacity of different ovarian cancer cell lines grown as spheroids. This approach allows for the continuous measurement of invasion over long periods of time, which has several advantages over traditional endpoint assays and more laborious real time microscopy image analyses. In short, this method enables a rapid, determination of factors which regulate the interactions between ovarian cancer spheroid cells invading through mesothelial and matrix barriers over time.

Show MeSH
Related in: MedlinePlus