Limits...
Engineered bacteriophage lysins as novel anti-infectives.

Yang H, Yu J, Wei H - Front Microbiol (2014)

Bottom Line: The modular structure of lysins makes it possible to design bioengineered lysins that have desired properties, such as higher activity, or broader killing spectrum.Moreover, lysins can even be engineered to kill Gram-negative bacterial pathogens from without, a property that is not present in natural lysins.In this era of ever increasing multidrug resistant pathogens, engineered lysins represent a new class of enzybiotics that are powerful and readily available to fight antimicrobial resistance.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences Wuhan, China.

ABSTRACT
Bacteriophage lysins, the highly evolved specific peptidoglycan hydrolases, have long been demonstrated to be effective enzybiotics in various infectious models. The modular structure of lysins makes it possible to design bioengineered lysins that have desired properties, such as higher activity, or broader killing spectrum. Moreover, lysins can even be engineered to kill Gram-negative bacterial pathogens from without, a property that is not present in natural lysins. In this era of ever increasing multidrug resistant pathogens, engineered lysins represent a new class of enzybiotics that are powerful and readily available to fight antimicrobial resistance.

No MeSH data available.


Related in: MedlinePlus

Lysin-based murein hydrolases. (A) The schematic structure of lysin, chimeolysin and artilysin. MPP, membrane penetrating peptides. (B) The cleavage sites of lysin-based murein hydrolases in the peptidoglycan. 1, N-acetyl muramidases; 2, N-acetylmuramoyl-L-alanine amidases; 3, L-alanoyl-D-glutamate endopeptidases; 4, interpeptide bridge endopeptidases; 5, N-acetyl-β-D-glucosaminidases.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4199284&req=5

Figure 1: Lysin-based murein hydrolases. (A) The schematic structure of lysin, chimeolysin and artilysin. MPP, membrane penetrating peptides. (B) The cleavage sites of lysin-based murein hydrolases in the peptidoglycan. 1, N-acetyl muramidases; 2, N-acetylmuramoyl-L-alanine amidases; 3, L-alanoyl-D-glutamate endopeptidases; 4, interpeptide bridge endopeptidases; 5, N-acetyl-β-D-glucosaminidases.

Mentions: Most frequently, lysins displayed a typically modular structure of at least two distinct domains (Villa and Crespo, 2010). That is an N-terminal CD and a C-terminal CBD, corresponding to their two basic functions: enzymatic hydrolysis and substrate recognition (Figure 1). In a few cases, lysins, particularly staphylococcal lysins, have been found to have more than one CDs and one CBD (Navarre et al., 1999; Rigden et al., 2003; Donovan et al., 2006b; Sass and Bierbaum, 2007; Obeso et al., 2008). Extraordinarily, a bacillus phage lysin, plyG, has been shown to have one CD and two separate binding domains, a CBD and a spore binding domain (SBD) (Yang et al., 2012). And the C1 streptococcal phage lysin, PlyC, is shown by crystallization to be a multimeric enzyme composed of eight cell wall binding subunits for each catalytic subunit (Nelson et al., 2006; McGowan et al., 2012).


Engineered bacteriophage lysins as novel anti-infectives.

Yang H, Yu J, Wei H - Front Microbiol (2014)

Lysin-based murein hydrolases. (A) The schematic structure of lysin, chimeolysin and artilysin. MPP, membrane penetrating peptides. (B) The cleavage sites of lysin-based murein hydrolases in the peptidoglycan. 1, N-acetyl muramidases; 2, N-acetylmuramoyl-L-alanine amidases; 3, L-alanoyl-D-glutamate endopeptidases; 4, interpeptide bridge endopeptidases; 5, N-acetyl-β-D-glucosaminidases.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4199284&req=5

Figure 1: Lysin-based murein hydrolases. (A) The schematic structure of lysin, chimeolysin and artilysin. MPP, membrane penetrating peptides. (B) The cleavage sites of lysin-based murein hydrolases in the peptidoglycan. 1, N-acetyl muramidases; 2, N-acetylmuramoyl-L-alanine amidases; 3, L-alanoyl-D-glutamate endopeptidases; 4, interpeptide bridge endopeptidases; 5, N-acetyl-β-D-glucosaminidases.
Mentions: Most frequently, lysins displayed a typically modular structure of at least two distinct domains (Villa and Crespo, 2010). That is an N-terminal CD and a C-terminal CBD, corresponding to their two basic functions: enzymatic hydrolysis and substrate recognition (Figure 1). In a few cases, lysins, particularly staphylococcal lysins, have been found to have more than one CDs and one CBD (Navarre et al., 1999; Rigden et al., 2003; Donovan et al., 2006b; Sass and Bierbaum, 2007; Obeso et al., 2008). Extraordinarily, a bacillus phage lysin, plyG, has been shown to have one CD and two separate binding domains, a CBD and a spore binding domain (SBD) (Yang et al., 2012). And the C1 streptococcal phage lysin, PlyC, is shown by crystallization to be a multimeric enzyme composed of eight cell wall binding subunits for each catalytic subunit (Nelson et al., 2006; McGowan et al., 2012).

Bottom Line: The modular structure of lysins makes it possible to design bioengineered lysins that have desired properties, such as higher activity, or broader killing spectrum.Moreover, lysins can even be engineered to kill Gram-negative bacterial pathogens from without, a property that is not present in natural lysins.In this era of ever increasing multidrug resistant pathogens, engineered lysins represent a new class of enzybiotics that are powerful and readily available to fight antimicrobial resistance.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences Wuhan, China.

ABSTRACT
Bacteriophage lysins, the highly evolved specific peptidoglycan hydrolases, have long been demonstrated to be effective enzybiotics in various infectious models. The modular structure of lysins makes it possible to design bioengineered lysins that have desired properties, such as higher activity, or broader killing spectrum. Moreover, lysins can even be engineered to kill Gram-negative bacterial pathogens from without, a property that is not present in natural lysins. In this era of ever increasing multidrug resistant pathogens, engineered lysins represent a new class of enzybiotics that are powerful and readily available to fight antimicrobial resistance.

No MeSH data available.


Related in: MedlinePlus