Limits...
Energy requirements of adult dogs: a meta-analysis.

Bermingham EN, Thomas DG, Cave NJ, Morris PJ, Butterwick RF, German AJ - PLoS ONE (2014)

Bottom Line: So that the resulting equations could readily be compared with equations reported by the National Research Council, maintenance energy requirements in the current study were determined in kcal/kg(0.75) body weight (BW).Further, reported activity level tended to effect the maintenance energy requirement of the dog (P = 0.09).This review suggests that estimating maintenance energy requirements based on BW alone may not be accurate, but that predictions that factor in husbandry, neuter status and, possibly, activity level might be superior.

View Article: PubMed Central - PubMed

Affiliation: Food Nutrition & Health Team, Food & Bio-based Products, AgResearch Grasslands, Palmerston North, New Zealand.

ABSTRACT
A meta-analysis was conducted to determine the maintenance energy requirements of adult dogs. Suitable publications were first identified, and then used to generate relationships amongst energy requirements, husbandry, activity level, methodology, sex, neuter status, dog size, and age in healthy adult dogs. Allometric equations for maintenance energy requirements were determined using log-log linear regression. So that the resulting equations could readily be compared with equations reported by the National Research Council, maintenance energy requirements in the current study were determined in kcal/kg(0.75) body weight (BW). Ultimately, the data of 70 treatment groups from 29 publications were used, and mean (± standard deviation) maintenance energy requirements were 142.8±55.3 kcal·kgBW(-0.75)·day(-1). The corresponding allometric equation was 81.5 kcal·kgBW(-0.9)·day(-1) (adjusted R2 = 0.64; 70 treatment groups). Type of husbandry had a significant effect on maintenance energy requirements (P<0.001): requirements were greatest in racing dogs, followed by working dogs and hunting dogs, whilst the energy requirements of pet dogs and kennel dogs were least. Maintenance energy requirements were less in neutered compared with sexually intact dogs (P<0.001), but there was no effect of sex. Further, reported activity level tended to effect the maintenance energy requirement of the dog (P = 0.09). This review suggests that estimating maintenance energy requirements based on BW alone may not be accurate, but that predictions that factor in husbandry, neuter status and, possibly, activity level might be superior. Additionally, more information on the nutrient requirements of older dogs, and those at the extremes of body size (i.e. giant and toy breeds) is needed.

Show MeSH

Related in: MedlinePlus

Summary of database searching and inclusion of final groups.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4196927&req=5

pone-0109681-g001: Summary of database searching and inclusion of final groups.

Mentions: After adjusting for duplicate records, the initial searches identified a total of 102 publications, with an additional two publications identified from interactions at conferences [4], [6] increasing the dataset to 104 publications (Figure 1). Abstracts and titles of these publications were reviewed, and 65 were discarded because they did not meet the eligibility criteria. Therefore, 39 papers that contained appropriate subject matter remained (Table 2). The primary author was able to locate full text versions of all but 13 of these publications, 8 of which were successfully located by a second author (AG). The corresponding authors of the remaining 5 publications were then contacted, by email and, for each one, full-text copies were successfully accessed and included in the analysis. The primary author then screened all 39 publications, in detail, for relevance and 124 treatment groups were identified (Table 2). This was reduced to 29 publications and 70 treatment groups after the removal of 54 treatment groups (Figure 1), most commonly because the publication did not include bodyweight data (32 treatment groups). The remaining treatment groups were removed because dogs were classed as overweight or obese (10 treatment groups), data were reported in graphical form only (5 treatment groups), maintenance energy requirements were based on survey data (5 treatment groups), bodyweight was unstable (1 treatment group), or because the publications were deemed to be outliers (1 treatment group with energy requirements of 11257 kcal/day [25]). Therefore, the final dataset comprised a total of 29 publications, with 70 treatment groups, and comprising a total of 713 dogs (Spreadsheet S1). The median study duration was 56 days (range 0.3 to 2920 days); the study with the shortest duration was an indirect calorimetry study [26]. In this final dataset, energy requirement was determined by FE (39 treatment groups), DLW (15 treatment groups), other tracer studies (6 treatment groups), or by IC (10 treatment groups). For the feeding studies, maintenance energy requirement was determined from the amount of food consumed and the metabolisable energy content of the diet. For this, metabolisable energy content was measured by feeding trials and bomb calorimetry (8 treatment groups) as previously described [27], [28], or calculated from proximate analysis of the diets and use of predictive equations using modified Atwater factors (29 treatment groups). In the remaining two treatment groups, the method by which maintenance energy requirement was determined was not given.


Energy requirements of adult dogs: a meta-analysis.

Bermingham EN, Thomas DG, Cave NJ, Morris PJ, Butterwick RF, German AJ - PLoS ONE (2014)

Summary of database searching and inclusion of final groups.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4196927&req=5

pone-0109681-g001: Summary of database searching and inclusion of final groups.
Mentions: After adjusting for duplicate records, the initial searches identified a total of 102 publications, with an additional two publications identified from interactions at conferences [4], [6] increasing the dataset to 104 publications (Figure 1). Abstracts and titles of these publications were reviewed, and 65 were discarded because they did not meet the eligibility criteria. Therefore, 39 papers that contained appropriate subject matter remained (Table 2). The primary author was able to locate full text versions of all but 13 of these publications, 8 of which were successfully located by a second author (AG). The corresponding authors of the remaining 5 publications were then contacted, by email and, for each one, full-text copies were successfully accessed and included in the analysis. The primary author then screened all 39 publications, in detail, for relevance and 124 treatment groups were identified (Table 2). This was reduced to 29 publications and 70 treatment groups after the removal of 54 treatment groups (Figure 1), most commonly because the publication did not include bodyweight data (32 treatment groups). The remaining treatment groups were removed because dogs were classed as overweight or obese (10 treatment groups), data were reported in graphical form only (5 treatment groups), maintenance energy requirements were based on survey data (5 treatment groups), bodyweight was unstable (1 treatment group), or because the publications were deemed to be outliers (1 treatment group with energy requirements of 11257 kcal/day [25]). Therefore, the final dataset comprised a total of 29 publications, with 70 treatment groups, and comprising a total of 713 dogs (Spreadsheet S1). The median study duration was 56 days (range 0.3 to 2920 days); the study with the shortest duration was an indirect calorimetry study [26]. In this final dataset, energy requirement was determined by FE (39 treatment groups), DLW (15 treatment groups), other tracer studies (6 treatment groups), or by IC (10 treatment groups). For the feeding studies, maintenance energy requirement was determined from the amount of food consumed and the metabolisable energy content of the diet. For this, metabolisable energy content was measured by feeding trials and bomb calorimetry (8 treatment groups) as previously described [27], [28], or calculated from proximate analysis of the diets and use of predictive equations using modified Atwater factors (29 treatment groups). In the remaining two treatment groups, the method by which maintenance energy requirement was determined was not given.

Bottom Line: So that the resulting equations could readily be compared with equations reported by the National Research Council, maintenance energy requirements in the current study were determined in kcal/kg(0.75) body weight (BW).Further, reported activity level tended to effect the maintenance energy requirement of the dog (P = 0.09).This review suggests that estimating maintenance energy requirements based on BW alone may not be accurate, but that predictions that factor in husbandry, neuter status and, possibly, activity level might be superior.

View Article: PubMed Central - PubMed

Affiliation: Food Nutrition & Health Team, Food & Bio-based Products, AgResearch Grasslands, Palmerston North, New Zealand.

ABSTRACT
A meta-analysis was conducted to determine the maintenance energy requirements of adult dogs. Suitable publications were first identified, and then used to generate relationships amongst energy requirements, husbandry, activity level, methodology, sex, neuter status, dog size, and age in healthy adult dogs. Allometric equations for maintenance energy requirements were determined using log-log linear regression. So that the resulting equations could readily be compared with equations reported by the National Research Council, maintenance energy requirements in the current study were determined in kcal/kg(0.75) body weight (BW). Ultimately, the data of 70 treatment groups from 29 publications were used, and mean (± standard deviation) maintenance energy requirements were 142.8±55.3 kcal·kgBW(-0.75)·day(-1). The corresponding allometric equation was 81.5 kcal·kgBW(-0.9)·day(-1) (adjusted R2 = 0.64; 70 treatment groups). Type of husbandry had a significant effect on maintenance energy requirements (P<0.001): requirements were greatest in racing dogs, followed by working dogs and hunting dogs, whilst the energy requirements of pet dogs and kennel dogs were least. Maintenance energy requirements were less in neutered compared with sexually intact dogs (P<0.001), but there was no effect of sex. Further, reported activity level tended to effect the maintenance energy requirement of the dog (P = 0.09). This review suggests that estimating maintenance energy requirements based on BW alone may not be accurate, but that predictions that factor in husbandry, neuter status and, possibly, activity level might be superior. Additionally, more information on the nutrient requirements of older dogs, and those at the extremes of body size (i.e. giant and toy breeds) is needed.

Show MeSH
Related in: MedlinePlus