Limits...
AZD1480 delays tumor growth in a melanoma model while enhancing the suppressive activity of myeloid-derived suppressor cells.

Maenhout SK, Du Four S, Corthals J, Neyns B, Thielemans K, Aerts JL - Oncotarget (2014)

Bottom Line: Here we investigated the effects of AZD1480 on the function of different immune cell populations in a melanoma model.Moreover, a significant decrease in the percentage of myeloid-derived suppressor cells (MDSCs) was observed after treatment with AZD1480.The addition of AZD1480 to co-cultures of human MDSCs and T cells does not affect the suppressive activity of MDSCs but it does reduce the IFN-γ secretion and the proliferative capacity of T cells.

View Article: PubMed Central - PubMed

Affiliation: Laboratory of Molecular and Cellular Therapy, Department of Immunology-Physiology, Vrije Universiteit Brussel, Brussels, Belgium.

ABSTRACT
AZD1480 is a potent, competitive small-molecule inhibitor of JAK1/2 kinase which inhibits STAT3 phosphorylation and tumor growth. Here we investigated the effects of AZD1480 on the function of different immune cell populations in a melanoma model. When MO4 tumor-bearing mice were treated with AZD1480 we observed a strong inhibition of tumor growth as well as a prolonged survival. Moreover, a significant decrease in the percentage of myeloid-derived suppressor cells (MDSCs) was observed after treatment with AZD1480. However, AZD1480 enhanced the suppressive capacity of murine MDSCs while at the same time impairing the proliferative as well as the IFN-γ secretion capacity of murine T cells. The addition of AZD1480 to co-cultures of human MDSCs and T cells does not affect the suppressive activity of MDSCs but it does reduce the IFN-γ secretion and the proliferative capacity of T cells. We showed that although AZD1480 has the ability to delay the tumor growth of MO4 tumor-bearing mice, this drug has detrimental effects on several aspects of the immune system. These data indicate that systemic targeting of the JAK/STAT pathway by JAK1/2 inhibition can have divergent effects on tumor growth and anti-tumor immune responses.

Show MeSH

Related in: MedlinePlus

In vivo AZD1480 treatment negatively impacts on the suppressive function of myeloid-derived suppressor cellsMO4 tumor-bearing mice were treated with AZD1480 at 30 mg/kg or vehicle control by oral gavage bid for 7 days. Two hours after the last dosing mice were sacrificed and grMDSC and moMDSC were isolated from the spleen and used in a suppression assay. Controls included T cells cultured in the absence of MDSCs with and without T-cell stimulation. A. Representative FACS profile of the proliferation of CD4+ T cells in the presence of different ratios of grMDSC. B. Overview of the percentage suppression of CD8+ T-cell proliferation (upper panel) and CD4+ T-cell proliferation (lower panel) cultured in the presence of different ratios of grMDSC. Two independent experiments were performed and results are presented as mean ± SEM. C. IFN-γ, TNF-α and IL-2 production by splenocytes was determined after 3 days of co-culture with different ratios of grMDSC. Results of two independent experiments are shown and data are presented as mean ± SEM. D. Representative FACS profile of the proliferation of CD4+ T cells in the presence of different ratios of moMDSC. E. Overview of the percentage suppression of CD8+ T-cell proliferation (upper panel) and CD4+ T-cell proliferation (lower panel) cultured in the presence of different ratios of moMDSC. Two independent experiments were performed and results are presented as mean ± SEM. F. IFN-γ, TNF-α and IL-2 production by splenocytes was determined after 3 days of co-culture with different ratios of moMDSC. Results of two independent experiments are shown and data are presented as mean SEM.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4196164&req=5

Figure 4: In vivo AZD1480 treatment negatively impacts on the suppressive function of myeloid-derived suppressor cellsMO4 tumor-bearing mice were treated with AZD1480 at 30 mg/kg or vehicle control by oral gavage bid for 7 days. Two hours after the last dosing mice were sacrificed and grMDSC and moMDSC were isolated from the spleen and used in a suppression assay. Controls included T cells cultured in the absence of MDSCs with and without T-cell stimulation. A. Representative FACS profile of the proliferation of CD4+ T cells in the presence of different ratios of grMDSC. B. Overview of the percentage suppression of CD8+ T-cell proliferation (upper panel) and CD4+ T-cell proliferation (lower panel) cultured in the presence of different ratios of grMDSC. Two independent experiments were performed and results are presented as mean ± SEM. C. IFN-γ, TNF-α and IL-2 production by splenocytes was determined after 3 days of co-culture with different ratios of grMDSC. Results of two independent experiments are shown and data are presented as mean ± SEM. D. Representative FACS profile of the proliferation of CD4+ T cells in the presence of different ratios of moMDSC. E. Overview of the percentage suppression of CD8+ T-cell proliferation (upper panel) and CD4+ T-cell proliferation (lower panel) cultured in the presence of different ratios of moMDSC. Two independent experiments were performed and results are presented as mean ± SEM. F. IFN-γ, TNF-α and IL-2 production by splenocytes was determined after 3 days of co-culture with different ratios of moMDSC. Results of two independent experiments are shown and data are presented as mean SEM.

Mentions: The observed reduction in the number of MDSCs in both the spleen and the tumor microenvironment prompted us to investigate whether AZD1480 affects the suppressive activity of these cells. Therefore we co-cultured splenocytes derived from healthy animals with grMDSC or moMDSC sorted from spleens of AZD1480 treated MO4 tumor-bearing mice and analyzed their effect on the proliferation of CD4+ and CD8+ T cells, respectively. At a 1:1 ratio (grMDSC:splenocytes) grMDSC isolated from vehicle treated mice and AZD1480 treated mice were equally suppressive, with a complete suppression of proliferation of both CD8+ and CD4+ T cells. For the grMDSCs isolated from vehicle treated mice we observed a dose-dependent reduction in the suppressive activity of these cells, with a complete abrogation of the suppressive function of these cells when cultured at a 1:8 (grMDSC:splenocytes) ratio. However, grMDSCs isolated from AZD1480 treated mice still yielded a 50% suppression of the proliferation of both CD4+ and CD8+ T cells when cultured at a 1:8 (grMDSC:splenocytes) ratio (Figure 4A-B). In contrast, when we looked at the cytokine secretion we observed an increase in the IFN-γ secretion when we co-culture grMDSCs isolated from the spleen of AZD1480 treated mice, compared to grMDSCs isolated from vehicle treated mice (Figure 4C). The secretion of IL-2 and TNF-α was not differentially affected by vehicle or AZD1480 treatment (Figure 4C). At a 1:2 ratio (moMDSC:splenocytes) moMDSC isolated from vehicle treated mice almost completely lost their suppressive activity on CD8+ T cell proliferation, while they were still capable of suppressing the proliferation of CD4+ T cells. However, moMDSCs isolated from AZD1480 treated mice still suppress the proliferation of both CD4+ and CD8+ T cells up to 80%, even at a 1:8 ratio (Figure 4D-E). Both the IFN-γ and the IL-2 secretion were increased when splenocytes were co-cultured in the presence of moMDSC derived from AZD1480 treated mice compared to moMDSC isolated from vehicle treated mice (Figure 4F). These data indicate that, on a per cell basis, AZD1480 enhances the suppressive function of both grMDSCs and moMDSCs on the proliferation of T cells.


AZD1480 delays tumor growth in a melanoma model while enhancing the suppressive activity of myeloid-derived suppressor cells.

Maenhout SK, Du Four S, Corthals J, Neyns B, Thielemans K, Aerts JL - Oncotarget (2014)

In vivo AZD1480 treatment negatively impacts on the suppressive function of myeloid-derived suppressor cellsMO4 tumor-bearing mice were treated with AZD1480 at 30 mg/kg or vehicle control by oral gavage bid for 7 days. Two hours after the last dosing mice were sacrificed and grMDSC and moMDSC were isolated from the spleen and used in a suppression assay. Controls included T cells cultured in the absence of MDSCs with and without T-cell stimulation. A. Representative FACS profile of the proliferation of CD4+ T cells in the presence of different ratios of grMDSC. B. Overview of the percentage suppression of CD8+ T-cell proliferation (upper panel) and CD4+ T-cell proliferation (lower panel) cultured in the presence of different ratios of grMDSC. Two independent experiments were performed and results are presented as mean ± SEM. C. IFN-γ, TNF-α and IL-2 production by splenocytes was determined after 3 days of co-culture with different ratios of grMDSC. Results of two independent experiments are shown and data are presented as mean ± SEM. D. Representative FACS profile of the proliferation of CD4+ T cells in the presence of different ratios of moMDSC. E. Overview of the percentage suppression of CD8+ T-cell proliferation (upper panel) and CD4+ T-cell proliferation (lower panel) cultured in the presence of different ratios of moMDSC. Two independent experiments were performed and results are presented as mean ± SEM. F. IFN-γ, TNF-α and IL-2 production by splenocytes was determined after 3 days of co-culture with different ratios of moMDSC. Results of two independent experiments are shown and data are presented as mean SEM.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4196164&req=5

Figure 4: In vivo AZD1480 treatment negatively impacts on the suppressive function of myeloid-derived suppressor cellsMO4 tumor-bearing mice were treated with AZD1480 at 30 mg/kg or vehicle control by oral gavage bid for 7 days. Two hours after the last dosing mice were sacrificed and grMDSC and moMDSC were isolated from the spleen and used in a suppression assay. Controls included T cells cultured in the absence of MDSCs with and without T-cell stimulation. A. Representative FACS profile of the proliferation of CD4+ T cells in the presence of different ratios of grMDSC. B. Overview of the percentage suppression of CD8+ T-cell proliferation (upper panel) and CD4+ T-cell proliferation (lower panel) cultured in the presence of different ratios of grMDSC. Two independent experiments were performed and results are presented as mean ± SEM. C. IFN-γ, TNF-α and IL-2 production by splenocytes was determined after 3 days of co-culture with different ratios of grMDSC. Results of two independent experiments are shown and data are presented as mean ± SEM. D. Representative FACS profile of the proliferation of CD4+ T cells in the presence of different ratios of moMDSC. E. Overview of the percentage suppression of CD8+ T-cell proliferation (upper panel) and CD4+ T-cell proliferation (lower panel) cultured in the presence of different ratios of moMDSC. Two independent experiments were performed and results are presented as mean ± SEM. F. IFN-γ, TNF-α and IL-2 production by splenocytes was determined after 3 days of co-culture with different ratios of moMDSC. Results of two independent experiments are shown and data are presented as mean SEM.
Mentions: The observed reduction in the number of MDSCs in both the spleen and the tumor microenvironment prompted us to investigate whether AZD1480 affects the suppressive activity of these cells. Therefore we co-cultured splenocytes derived from healthy animals with grMDSC or moMDSC sorted from spleens of AZD1480 treated MO4 tumor-bearing mice and analyzed their effect on the proliferation of CD4+ and CD8+ T cells, respectively. At a 1:1 ratio (grMDSC:splenocytes) grMDSC isolated from vehicle treated mice and AZD1480 treated mice were equally suppressive, with a complete suppression of proliferation of both CD8+ and CD4+ T cells. For the grMDSCs isolated from vehicle treated mice we observed a dose-dependent reduction in the suppressive activity of these cells, with a complete abrogation of the suppressive function of these cells when cultured at a 1:8 (grMDSC:splenocytes) ratio. However, grMDSCs isolated from AZD1480 treated mice still yielded a 50% suppression of the proliferation of both CD4+ and CD8+ T cells when cultured at a 1:8 (grMDSC:splenocytes) ratio (Figure 4A-B). In contrast, when we looked at the cytokine secretion we observed an increase in the IFN-γ secretion when we co-culture grMDSCs isolated from the spleen of AZD1480 treated mice, compared to grMDSCs isolated from vehicle treated mice (Figure 4C). The secretion of IL-2 and TNF-α was not differentially affected by vehicle or AZD1480 treatment (Figure 4C). At a 1:2 ratio (moMDSC:splenocytes) moMDSC isolated from vehicle treated mice almost completely lost their suppressive activity on CD8+ T cell proliferation, while they were still capable of suppressing the proliferation of CD4+ T cells. However, moMDSCs isolated from AZD1480 treated mice still suppress the proliferation of both CD4+ and CD8+ T cells up to 80%, even at a 1:8 ratio (Figure 4D-E). Both the IFN-γ and the IL-2 secretion were increased when splenocytes were co-cultured in the presence of moMDSC derived from AZD1480 treated mice compared to moMDSC isolated from vehicle treated mice (Figure 4F). These data indicate that, on a per cell basis, AZD1480 enhances the suppressive function of both grMDSCs and moMDSCs on the proliferation of T cells.

Bottom Line: Here we investigated the effects of AZD1480 on the function of different immune cell populations in a melanoma model.Moreover, a significant decrease in the percentage of myeloid-derived suppressor cells (MDSCs) was observed after treatment with AZD1480.The addition of AZD1480 to co-cultures of human MDSCs and T cells does not affect the suppressive activity of MDSCs but it does reduce the IFN-γ secretion and the proliferative capacity of T cells.

View Article: PubMed Central - PubMed

Affiliation: Laboratory of Molecular and Cellular Therapy, Department of Immunology-Physiology, Vrije Universiteit Brussel, Brussels, Belgium.

ABSTRACT
AZD1480 is a potent, competitive small-molecule inhibitor of JAK1/2 kinase which inhibits STAT3 phosphorylation and tumor growth. Here we investigated the effects of AZD1480 on the function of different immune cell populations in a melanoma model. When MO4 tumor-bearing mice were treated with AZD1480 we observed a strong inhibition of tumor growth as well as a prolonged survival. Moreover, a significant decrease in the percentage of myeloid-derived suppressor cells (MDSCs) was observed after treatment with AZD1480. However, AZD1480 enhanced the suppressive capacity of murine MDSCs while at the same time impairing the proliferative as well as the IFN-γ secretion capacity of murine T cells. The addition of AZD1480 to co-cultures of human MDSCs and T cells does not affect the suppressive activity of MDSCs but it does reduce the IFN-γ secretion and the proliferative capacity of T cells. We showed that although AZD1480 has the ability to delay the tumor growth of MO4 tumor-bearing mice, this drug has detrimental effects on several aspects of the immune system. These data indicate that systemic targeting of the JAK/STAT pathway by JAK1/2 inhibition can have divergent effects on tumor growth and anti-tumor immune responses.

Show MeSH
Related in: MedlinePlus