Limits...
Whole-body vibration training effect on physical performance and obesity in mice.

Huang CC, Tseng TL, Huang WC, Chung YH, Chuang HL, Wu JH - Int J Med Sci (2014)

Bottom Line: WBV also dose-dependently decreased serum lactate, ammonia and CK levels and increased glucose level after the swimming test.WBV slightly decreased final body weight and dose-dependently decreased weights of epididymal, retroperitoneal and perirenal fat pads and fasting serum levels of alanine aminotransferase, CK, glucose, total cholesterol and triacylglycerol.Therefore, WBV could improve exercise performance and fatigue and prevent fat accumulation and obesity-associated biochemical alterations in obese mice.

View Article: PubMed Central - PubMed

Affiliation: 1. Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 33301, Taiwan.

ABSTRACT
The purpose of this study was to verify the beneficial effects of whole-body vibration (WBV) training on exercise performance, physical fatigue and obesity in mice with obesity induced by a high-fat diet (HFD). Male C57BL/6 mice were randomly divided into two groups: normal group (n=6), fed standard diet (control), and experimental group (n=18), fed a HFD. After 4-week induction, followed by 6-week WBV of 5 days per week, the 18 obese mice were divided into 3 groups (n=6 per group): HFD with sedentary control (HFD), HFD with WBV at relatively low-intensity (5.6 Hz, 0.13 g) (HFD+VL) or high-intensity (13 Hz, 0.68 g) (HFD+VH). A trend analysis revealed that WBV increased the grip strength in mice. WBV also dose-dependently decreased serum lactate, ammonia and CK levels and increased glucose level after the swimming test. WBV slightly decreased final body weight and dose-dependently decreased weights of epididymal, retroperitoneal and perirenal fat pads and fasting serum levels of alanine aminotransferase, CK, glucose, total cholesterol and triacylglycerol. Therefore, WBV could improve exercise performance and fatigue and prevent fat accumulation and obesity-associated biochemical alterations in obese mice. It may be an effective intervention for health promotion and prevention of HFD-induced obesity.

Show MeSH

Related in: MedlinePlus

Effect of 6-week WBV on forelimb grip strength (A) and serum lactate (B), ammonia (C), glucose (D) and creatine kinase (CK) (E) levels after a 15-min swimming exercise challenge in HFD-induced obese mice. Data are mean±SEM (n=6 mice/group). Different letters (a, b, c) indicate significant difference at P<0.05 by one-way ANOVA. The effect of vibration intensity was investigated by the Cochran-Armitage test for the dose-effect trend analysis. *P <0.05 was considered statistically significant.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4196122&req=5

Figure 3: Effect of 6-week WBV on forelimb grip strength (A) and serum lactate (B), ammonia (C), glucose (D) and creatine kinase (CK) (E) levels after a 15-min swimming exercise challenge in HFD-induced obese mice. Data are mean±SEM (n=6 mice/group). Different letters (a, b, c) indicate significant difference at P<0.05 by one-way ANOVA. The effect of vibration intensity was investigated by the Cochran-Armitage test for the dose-effect trend analysis. *P <0.05 was considered statistically significant.

Mentions: The absolute grip strength of the mice was lower for HFD-alone than control mice (126±4 vs. 131±2 g) (Fig. 3A). The grip strength was higher with HFD+VL and HFD+VH than HFD alone (151±5 and 164±5 g vs. 126±4 g) (P<0.05). Therefore, HFD alone slightly lowered the absolute grip strength, and HFD+VL and HFD+VH significantly increased relative absolute grip strength by 1.19- and 1.30-fold, respectively, as compared with HFD alone. Thus, WBV dose-dependently increased grip strength (P<0.0001). The effect size of eta-squared is 0.74 as large significant strength.


Whole-body vibration training effect on physical performance and obesity in mice.

Huang CC, Tseng TL, Huang WC, Chung YH, Chuang HL, Wu JH - Int J Med Sci (2014)

Effect of 6-week WBV on forelimb grip strength (A) and serum lactate (B), ammonia (C), glucose (D) and creatine kinase (CK) (E) levels after a 15-min swimming exercise challenge in HFD-induced obese mice. Data are mean±SEM (n=6 mice/group). Different letters (a, b, c) indicate significant difference at P<0.05 by one-way ANOVA. The effect of vibration intensity was investigated by the Cochran-Armitage test for the dose-effect trend analysis. *P <0.05 was considered statistically significant.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4196122&req=5

Figure 3: Effect of 6-week WBV on forelimb grip strength (A) and serum lactate (B), ammonia (C), glucose (D) and creatine kinase (CK) (E) levels after a 15-min swimming exercise challenge in HFD-induced obese mice. Data are mean±SEM (n=6 mice/group). Different letters (a, b, c) indicate significant difference at P<0.05 by one-way ANOVA. The effect of vibration intensity was investigated by the Cochran-Armitage test for the dose-effect trend analysis. *P <0.05 was considered statistically significant.
Mentions: The absolute grip strength of the mice was lower for HFD-alone than control mice (126±4 vs. 131±2 g) (Fig. 3A). The grip strength was higher with HFD+VL and HFD+VH than HFD alone (151±5 and 164±5 g vs. 126±4 g) (P<0.05). Therefore, HFD alone slightly lowered the absolute grip strength, and HFD+VL and HFD+VH significantly increased relative absolute grip strength by 1.19- and 1.30-fold, respectively, as compared with HFD alone. Thus, WBV dose-dependently increased grip strength (P<0.0001). The effect size of eta-squared is 0.74 as large significant strength.

Bottom Line: WBV also dose-dependently decreased serum lactate, ammonia and CK levels and increased glucose level after the swimming test.WBV slightly decreased final body weight and dose-dependently decreased weights of epididymal, retroperitoneal and perirenal fat pads and fasting serum levels of alanine aminotransferase, CK, glucose, total cholesterol and triacylglycerol.Therefore, WBV could improve exercise performance and fatigue and prevent fat accumulation and obesity-associated biochemical alterations in obese mice.

View Article: PubMed Central - PubMed

Affiliation: 1. Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 33301, Taiwan.

ABSTRACT
The purpose of this study was to verify the beneficial effects of whole-body vibration (WBV) training on exercise performance, physical fatigue and obesity in mice with obesity induced by a high-fat diet (HFD). Male C57BL/6 mice were randomly divided into two groups: normal group (n=6), fed standard diet (control), and experimental group (n=18), fed a HFD. After 4-week induction, followed by 6-week WBV of 5 days per week, the 18 obese mice were divided into 3 groups (n=6 per group): HFD with sedentary control (HFD), HFD with WBV at relatively low-intensity (5.6 Hz, 0.13 g) (HFD+VL) or high-intensity (13 Hz, 0.68 g) (HFD+VH). A trend analysis revealed that WBV increased the grip strength in mice. WBV also dose-dependently decreased serum lactate, ammonia and CK levels and increased glucose level after the swimming test. WBV slightly decreased final body weight and dose-dependently decreased weights of epididymal, retroperitoneal and perirenal fat pads and fasting serum levels of alanine aminotransferase, CK, glucose, total cholesterol and triacylglycerol. Therefore, WBV could improve exercise performance and fatigue and prevent fat accumulation and obesity-associated biochemical alterations in obese mice. It may be an effective intervention for health promotion and prevention of HFD-induced obesity.

Show MeSH
Related in: MedlinePlus