Limits...
Whole-body vibration training effect on physical performance and obesity in mice.

Huang CC, Tseng TL, Huang WC, Chung YH, Chuang HL, Wu JH - Int J Med Sci (2014)

Bottom Line: WBV also dose-dependently decreased serum lactate, ammonia and CK levels and increased glucose level after the swimming test.WBV slightly decreased final body weight and dose-dependently decreased weights of epididymal, retroperitoneal and perirenal fat pads and fasting serum levels of alanine aminotransferase, CK, glucose, total cholesterol and triacylglycerol.Therefore, WBV could improve exercise performance and fatigue and prevent fat accumulation and obesity-associated biochemical alterations in obese mice.

View Article: PubMed Central - PubMed

Affiliation: 1. Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 33301, Taiwan.

ABSTRACT
The purpose of this study was to verify the beneficial effects of whole-body vibration (WBV) training on exercise performance, physical fatigue and obesity in mice with obesity induced by a high-fat diet (HFD). Male C57BL/6 mice were randomly divided into two groups: normal group (n=6), fed standard diet (control), and experimental group (n=18), fed a HFD. After 4-week induction, followed by 6-week WBV of 5 days per week, the 18 obese mice were divided into 3 groups (n=6 per group): HFD with sedentary control (HFD), HFD with WBV at relatively low-intensity (5.6 Hz, 0.13 g) (HFD+VL) or high-intensity (13 Hz, 0.68 g) (HFD+VH). A trend analysis revealed that WBV increased the grip strength in mice. WBV also dose-dependently decreased serum lactate, ammonia and CK levels and increased glucose level after the swimming test. WBV slightly decreased final body weight and dose-dependently decreased weights of epididymal, retroperitoneal and perirenal fat pads and fasting serum levels of alanine aminotransferase, CK, glucose, total cholesterol and triacylglycerol. Therefore, WBV could improve exercise performance and fatigue and prevent fat accumulation and obesity-associated biochemical alterations in obese mice. It may be an effective intervention for health promotion and prevention of HFD-induced obesity.

Show MeSH

Related in: MedlinePlus

Experimental design. After 1-week adaption, 24 mice were divided randomly into two groups: the normal group was fed a standard chow diet (control, n=6) and the experimental group with a high-fat diet (HFD, n=18). After 4 weeks of the high-fat diet, the 18 obese mice were divided into three groups (n=6/each group): 1) HFD with sedentary control (HFD), 2) HFD with relatively low-intensity WBV (HFD+VL; 5.6 Hz, 0.13 g peak acceleration and 2-mm vibration amplitude) or 3) HFD with relatively high-intensity WBV (HFD+VH; 13 Hz, 0.68 g peak acceleration and 2 mm vibration amplitude).
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4196122&req=5

Figure 1: Experimental design. After 1-week adaption, 24 mice were divided randomly into two groups: the normal group was fed a standard chow diet (control, n=6) and the experimental group with a high-fat diet (HFD, n=18). After 4 weeks of the high-fat diet, the 18 obese mice were divided into three groups (n=6/each group): 1) HFD with sedentary control (HFD), 2) HFD with relatively low-intensity WBV (HFD+VL; 5.6 Hz, 0.13 g peak acceleration and 2-mm vibration amplitude) or 3) HFD with relatively high-intensity WBV (HFD+VH; 13 Hz, 0.68 g peak acceleration and 2 mm vibration amplitude).

Mentions: The experimental design was depicted as in Fig. 1. After 1-week acclimatization, 24 mice were divided randomly into two groups: the normal group (n=6) was fed a standard chow diet (control) and the experimental group (n=18) a high-fat diet (HFD). The 18 resulting obese mice were divided into three groups (n=6/each group): 1) HFD with sedentary control (HFD), 2) HFD with relatively low-intensity WBV (HFD+VL; 5.6 Hz, 0.13 g peak acceleration and 2-mm vibration amplitude) or 3) HFD with relatively high-intensity WBV (HFD+VH; 13 Hz, 0.68 g peak acceleration and 2 mm vibration amplitude). Food intake and water consumption were recorded daily, and all animals were weighed weekly.


Whole-body vibration training effect on physical performance and obesity in mice.

Huang CC, Tseng TL, Huang WC, Chung YH, Chuang HL, Wu JH - Int J Med Sci (2014)

Experimental design. After 1-week adaption, 24 mice were divided randomly into two groups: the normal group was fed a standard chow diet (control, n=6) and the experimental group with a high-fat diet (HFD, n=18). After 4 weeks of the high-fat diet, the 18 obese mice were divided into three groups (n=6/each group): 1) HFD with sedentary control (HFD), 2) HFD with relatively low-intensity WBV (HFD+VL; 5.6 Hz, 0.13 g peak acceleration and 2-mm vibration amplitude) or 3) HFD with relatively high-intensity WBV (HFD+VH; 13 Hz, 0.68 g peak acceleration and 2 mm vibration amplitude).
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4196122&req=5

Figure 1: Experimental design. After 1-week adaption, 24 mice were divided randomly into two groups: the normal group was fed a standard chow diet (control, n=6) and the experimental group with a high-fat diet (HFD, n=18). After 4 weeks of the high-fat diet, the 18 obese mice were divided into three groups (n=6/each group): 1) HFD with sedentary control (HFD), 2) HFD with relatively low-intensity WBV (HFD+VL; 5.6 Hz, 0.13 g peak acceleration and 2-mm vibration amplitude) or 3) HFD with relatively high-intensity WBV (HFD+VH; 13 Hz, 0.68 g peak acceleration and 2 mm vibration amplitude).
Mentions: The experimental design was depicted as in Fig. 1. After 1-week acclimatization, 24 mice were divided randomly into two groups: the normal group (n=6) was fed a standard chow diet (control) and the experimental group (n=18) a high-fat diet (HFD). The 18 resulting obese mice were divided into three groups (n=6/each group): 1) HFD with sedentary control (HFD), 2) HFD with relatively low-intensity WBV (HFD+VL; 5.6 Hz, 0.13 g peak acceleration and 2-mm vibration amplitude) or 3) HFD with relatively high-intensity WBV (HFD+VH; 13 Hz, 0.68 g peak acceleration and 2 mm vibration amplitude). Food intake and water consumption were recorded daily, and all animals were weighed weekly.

Bottom Line: WBV also dose-dependently decreased serum lactate, ammonia and CK levels and increased glucose level after the swimming test.WBV slightly decreased final body weight and dose-dependently decreased weights of epididymal, retroperitoneal and perirenal fat pads and fasting serum levels of alanine aminotransferase, CK, glucose, total cholesterol and triacylglycerol.Therefore, WBV could improve exercise performance and fatigue and prevent fat accumulation and obesity-associated biochemical alterations in obese mice.

View Article: PubMed Central - PubMed

Affiliation: 1. Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 33301, Taiwan.

ABSTRACT
The purpose of this study was to verify the beneficial effects of whole-body vibration (WBV) training on exercise performance, physical fatigue and obesity in mice with obesity induced by a high-fat diet (HFD). Male C57BL/6 mice were randomly divided into two groups: normal group (n=6), fed standard diet (control), and experimental group (n=18), fed a HFD. After 4-week induction, followed by 6-week WBV of 5 days per week, the 18 obese mice were divided into 3 groups (n=6 per group): HFD with sedentary control (HFD), HFD with WBV at relatively low-intensity (5.6 Hz, 0.13 g) (HFD+VL) or high-intensity (13 Hz, 0.68 g) (HFD+VH). A trend analysis revealed that WBV increased the grip strength in mice. WBV also dose-dependently decreased serum lactate, ammonia and CK levels and increased glucose level after the swimming test. WBV slightly decreased final body weight and dose-dependently decreased weights of epididymal, retroperitoneal and perirenal fat pads and fasting serum levels of alanine aminotransferase, CK, glucose, total cholesterol and triacylglycerol. Therefore, WBV could improve exercise performance and fatigue and prevent fat accumulation and obesity-associated biochemical alterations in obese mice. It may be an effective intervention for health promotion and prevention of HFD-induced obesity.

Show MeSH
Related in: MedlinePlus