Limits...
SREBF1 gene variations modulate insulin sensitivity in response to a fish oil supplementation.

Bouchard-Mercier A, Rudkowska I, Lemieux S, Couture P, Pérusse L, Vohl MC - Lipids Health Dis (2014)

Bottom Line: Participants (n = 210) were recruited in the greater Quebec City area and followed a 6-week fish oil supplementation protocol (5 g/day: 1.9-2.2 g EPA; 1.1 g DHA).Three tSNPs (rs12953299, rs4925118 and rs4925115) covered 100% of the known genetic variability within SREBF1 gene.The three tSNPs (rs12953299, rs4925118 and rs4925115) were associated with differences in the response of plasma insulin levels (p = 0.01, p = 0.005 and p = 0.004, respectively) and rs12953299 as well as rs4925115 were associated with the insulin sensitivity response (p = 0.009 and p = 0.01, respectively) to the fish oil supplementation, independently of the effects of age, sex and BMI.

View Article: PubMed Central - PubMed

Affiliation: Institute of Nutrition and Functional Foods (INAF), Laval University, 2440 Hochelaga Blvd,, Quebec G1V 0A6, Canada. marie-claude.vohl@fsaa.ulaval.ca.

ABSTRACT

Background: An important inter-individual variability in the response of insulin sensitivity following a fish oil supplementation has been observed. The objective was to examine the associations between single nucleotide polymorphisms (SNPs) within sterol regulatory element binding transcription factor 1 (SREBF1) gene and the response of insulin sensitivity to a fish oil supplementation.

Methods: Participants (n = 210) were recruited in the greater Quebec City area and followed a 6-week fish oil supplementation protocol (5 g/day: 1.9-2.2 g EPA; 1.1 g DHA). Insulin sensitivity was assessed by the quantitative insulin sensitivity check index (QUICKI). Three tag SNPs (tSNPs) within SREBF1 gene were genotyped according to TAQMAN methodology.

Results: Three tSNPs (rs12953299, rs4925118 and rs4925115) covered 100% of the known genetic variability within SREBF1 gene. None of the three tSNPs was associated with either baseline fasting insulin concentrations (rs12953299, rs4925118 and rs4925115) (p = 0.29, p = 0.20 and p = 0.70, respectively) or QUICKI (p = 0.20, p = 0.18 and p = 0.76, respectively). The three tSNPs (rs12953299, rs4925118 and rs4925115) were associated with differences in the response of plasma insulin levels (p = 0.01, p = 0.005 and p = 0.004, respectively) and rs12953299 as well as rs4925115 were associated with the insulin sensitivity response (p = 0.009 and p = 0.01, respectively) to the fish oil supplementation, independently of the effects of age, sex and BMI.

Conclusions: The genetic variability within SREBF1 gene has an impact on the insulin sensitivity in response to a fish oil supplementation.

Trial registration: clinicaltrials.gov: NCT01343342.

Show MeSH

Related in: MedlinePlus

QUICKI index values according to rs2297508 genotype and tertiles of dietary PUFA intakes. Figure legend. Tertile 1 of dietary PUFA intakes (3.17 g-11.97 g) (G/G: n = 48; C/G: n = 95; C/C: n = 67), Tertile 2 of dietary PUFA intakes (11.98 g-16.49 g) (G/G: n = 41; C/G: n = 91; C/C: n = 82) and Tertile 3 of dietary PUFA intakes (16.53 g-48.18 g) (G/G: n = 27; C/G: n = 96; C/C: n = 86). Differences in QUICKI values between tertiles were assessed with an ANOVA by genotype adjusted for the effects of age, sex and BMI. Means with different letters are significantly different. Means ± SE.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4196000&req=5

Fig3: QUICKI index values according to rs2297508 genotype and tertiles of dietary PUFA intakes. Figure legend. Tertile 1 of dietary PUFA intakes (3.17 g-11.97 g) (G/G: n = 48; C/G: n = 95; C/C: n = 67), Tertile 2 of dietary PUFA intakes (11.98 g-16.49 g) (G/G: n = 41; C/G: n = 91; C/C: n = 82) and Tertile 3 of dietary PUFA intakes (16.53 g-48.18 g) (G/G: n = 27; C/G: n = 96; C/C: n = 86). Differences in QUICKI values between tertiles were assessed with an ANOVA by genotype adjusted for the effects of age, sex and BMI. Means with different letters are significantly different. Means ± SE.

Mentions: As presented in Table 3, one significant gene-diet interaction effects on QUICKI (insulin sensitivity index) was observed between rs2297508 and dietary PUFA intakes (in grams) (p = 0.05). To further understand these associations dietary PUFA intakes were divided in tertiles. Figure 3 presents QUICKI values according to genotype of rs2297508 and tertiles of dietary PUFA intakes. A significant difference was observed only among C/C homozygotes for which individuals with the highest dietary PUFA intakes had higher QUICKI values than individuals with the lowest dietary PUFA intakes (p = 0.03). A trend (p = 0.06) was observed for the interaction effect on QUICKI between rs2297508 and dietary intakes of omega-3 PUFA (in grams). Both models were adjusted for the effects of age, sex, BMI and energy intakes. Genotype of rs2297508 alone was not associated with QUICKI values (p = 0.21). No gene-diet interaction effects were observed on fasting insulin or glucose concentrations.Table 3


SREBF1 gene variations modulate insulin sensitivity in response to a fish oil supplementation.

Bouchard-Mercier A, Rudkowska I, Lemieux S, Couture P, Pérusse L, Vohl MC - Lipids Health Dis (2014)

QUICKI index values according to rs2297508 genotype and tertiles of dietary PUFA intakes. Figure legend. Tertile 1 of dietary PUFA intakes (3.17 g-11.97 g) (G/G: n = 48; C/G: n = 95; C/C: n = 67), Tertile 2 of dietary PUFA intakes (11.98 g-16.49 g) (G/G: n = 41; C/G: n = 91; C/C: n = 82) and Tertile 3 of dietary PUFA intakes (16.53 g-48.18 g) (G/G: n = 27; C/G: n = 96; C/C: n = 86). Differences in QUICKI values between tertiles were assessed with an ANOVA by genotype adjusted for the effects of age, sex and BMI. Means with different letters are significantly different. Means ± SE.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4196000&req=5

Fig3: QUICKI index values according to rs2297508 genotype and tertiles of dietary PUFA intakes. Figure legend. Tertile 1 of dietary PUFA intakes (3.17 g-11.97 g) (G/G: n = 48; C/G: n = 95; C/C: n = 67), Tertile 2 of dietary PUFA intakes (11.98 g-16.49 g) (G/G: n = 41; C/G: n = 91; C/C: n = 82) and Tertile 3 of dietary PUFA intakes (16.53 g-48.18 g) (G/G: n = 27; C/G: n = 96; C/C: n = 86). Differences in QUICKI values between tertiles were assessed with an ANOVA by genotype adjusted for the effects of age, sex and BMI. Means with different letters are significantly different. Means ± SE.
Mentions: As presented in Table 3, one significant gene-diet interaction effects on QUICKI (insulin sensitivity index) was observed between rs2297508 and dietary PUFA intakes (in grams) (p = 0.05). To further understand these associations dietary PUFA intakes were divided in tertiles. Figure 3 presents QUICKI values according to genotype of rs2297508 and tertiles of dietary PUFA intakes. A significant difference was observed only among C/C homozygotes for which individuals with the highest dietary PUFA intakes had higher QUICKI values than individuals with the lowest dietary PUFA intakes (p = 0.03). A trend (p = 0.06) was observed for the interaction effect on QUICKI between rs2297508 and dietary intakes of omega-3 PUFA (in grams). Both models were adjusted for the effects of age, sex, BMI and energy intakes. Genotype of rs2297508 alone was not associated with QUICKI values (p = 0.21). No gene-diet interaction effects were observed on fasting insulin or glucose concentrations.Table 3

Bottom Line: Participants (n = 210) were recruited in the greater Quebec City area and followed a 6-week fish oil supplementation protocol (5 g/day: 1.9-2.2 g EPA; 1.1 g DHA).Three tSNPs (rs12953299, rs4925118 and rs4925115) covered 100% of the known genetic variability within SREBF1 gene.The three tSNPs (rs12953299, rs4925118 and rs4925115) were associated with differences in the response of plasma insulin levels (p = 0.01, p = 0.005 and p = 0.004, respectively) and rs12953299 as well as rs4925115 were associated with the insulin sensitivity response (p = 0.009 and p = 0.01, respectively) to the fish oil supplementation, independently of the effects of age, sex and BMI.

View Article: PubMed Central - PubMed

Affiliation: Institute of Nutrition and Functional Foods (INAF), Laval University, 2440 Hochelaga Blvd,, Quebec G1V 0A6, Canada. marie-claude.vohl@fsaa.ulaval.ca.

ABSTRACT

Background: An important inter-individual variability in the response of insulin sensitivity following a fish oil supplementation has been observed. The objective was to examine the associations between single nucleotide polymorphisms (SNPs) within sterol regulatory element binding transcription factor 1 (SREBF1) gene and the response of insulin sensitivity to a fish oil supplementation.

Methods: Participants (n = 210) were recruited in the greater Quebec City area and followed a 6-week fish oil supplementation protocol (5 g/day: 1.9-2.2 g EPA; 1.1 g DHA). Insulin sensitivity was assessed by the quantitative insulin sensitivity check index (QUICKI). Three tag SNPs (tSNPs) within SREBF1 gene were genotyped according to TAQMAN methodology.

Results: Three tSNPs (rs12953299, rs4925118 and rs4925115) covered 100% of the known genetic variability within SREBF1 gene. None of the three tSNPs was associated with either baseline fasting insulin concentrations (rs12953299, rs4925118 and rs4925115) (p = 0.29, p = 0.20 and p = 0.70, respectively) or QUICKI (p = 0.20, p = 0.18 and p = 0.76, respectively). The three tSNPs (rs12953299, rs4925118 and rs4925115) were associated with differences in the response of plasma insulin levels (p = 0.01, p = 0.005 and p = 0.004, respectively) and rs12953299 as well as rs4925115 were associated with the insulin sensitivity response (p = 0.009 and p = 0.01, respectively) to the fish oil supplementation, independently of the effects of age, sex and BMI.

Conclusions: The genetic variability within SREBF1 gene has an impact on the insulin sensitivity in response to a fish oil supplementation.

Trial registration: clinicaltrials.gov: NCT01343342.

Show MeSH
Related in: MedlinePlus