Limits...
SREBF1 gene variations modulate insulin sensitivity in response to a fish oil supplementation.

Bouchard-Mercier A, Rudkowska I, Lemieux S, Couture P, PΓ©russe L, Vohl MC - Lipids Health Dis (2014)

Bottom Line: Participants (n = 210) were recruited in the greater Quebec City area and followed a 6-week fish oil supplementation protocol (5 g/day: 1.9-2.2 g EPA; 1.1 g DHA).Three tSNPs (rs12953299, rs4925118 and rs4925115) covered 100% of the known genetic variability within SREBF1 gene.The three tSNPs (rs12953299, rs4925118 and rs4925115) were associated with differences in the response of plasma insulin levels (p = 0.01, p = 0.005 and p = 0.004, respectively) and rs12953299 as well as rs4925115 were associated with the insulin sensitivity response (p = 0.009 and p = 0.01, respectively) to the fish oil supplementation, independently of the effects of age, sex and BMI.

View Article: PubMed Central - PubMed

Affiliation: Institute of Nutrition and Functional Foods (INAF), Laval University, 2440 Hochelaga Blvd,, Quebec G1V 0A6, Canada. marie-claude.vohl@fsaa.ulaval.ca.

ABSTRACT

Background: An important inter-individual variability in the response of insulin sensitivity following a fish oil supplementation has been observed. The objective was to examine the associations between single nucleotide polymorphisms (SNPs) within sterol regulatory element binding transcription factor 1 (SREBF1) gene and the response of insulin sensitivity to a fish oil supplementation.

Methods: Participants (n = 210) were recruited in the greater Quebec City area and followed a 6-week fish oil supplementation protocol (5 g/day: 1.9-2.2 g EPA; 1.1 g DHA). Insulin sensitivity was assessed by the quantitative insulin sensitivity check index (QUICKI). Three tag SNPs (tSNPs) within SREBF1 gene were genotyped according to TAQMAN methodology.

Results: Three tSNPs (rs12953299, rs4925118 and rs4925115) covered 100% of the known genetic variability within SREBF1 gene. None of the three tSNPs was associated with either baseline fasting insulin concentrations (rs12953299, rs4925118 and rs4925115) (p = 0.29, p = 0.20 and p = 0.70, respectively) or QUICKI (p = 0.20, p = 0.18 and p = 0.76, respectively). The three tSNPs (rs12953299, rs4925118 and rs4925115) were associated with differences in the response of plasma insulin levels (p = 0.01, p = 0.005 and p = 0.004, respectively) and rs12953299 as well as rs4925115 were associated with the insulin sensitivity response (p = 0.009 and p = 0.01, respectively) to the fish oil supplementation, independently of the effects of age, sex and BMI.

Conclusions: The genetic variability within SREBF1 gene has an impact on the insulin sensitivity in response to a fish oil supplementation.

Trial registration: clinicaltrials.gov: NCT01343342.

Show MeSH

Related in: MedlinePlus

The relative response in fasting insulin concentrations and QUICKI index (insulin sensitivity) according to genotype. Figure legend. a) rs12953299 (A/A: n = 46, A/G: n = 100, G/G: n = 55); Delta insulin (A/A: 15.3 ± 32.0%, A/G: 1.2 ± 30.1%, G/G: 3.9 ± 26.4%), P-value for delta insulin model: p = 0.01; Delta QUICKI (A/A: -2.0 ± 4.1%, A/G: 0.4 ± 4.8%, G/G: 3.9 ± 26.4%), P-value for delta QUICKI model: p = 0.009 b) rs4925118 (T/T + C/T: n = 67, C/C: n = 134); Delta insulin (T/T + C/T: 14.1 ± 36.2%, C/C: 0.6 ± 25.3%), P-value for delta insulin model: p = 0.005; P-value for delta QUICKI model: p = 0.16 c) rs4925115 (A/A: n = 33, A/G: n = 105, G/G: n = 63); Delta insulin (A/A: 19.5 ± 34.0%, A/G: 3.4 ± 29.3%, G/G: 0.6 ± 27.0%), P-value for delta insulin model: p = 0.004; Delta QUICKI (A/A: -2.3 ± 4.2%, A/G: -0.1 ± 4.5%, 0.4 ± 4.5%), P-value for delta QUICKI model: p = 0.01. Delta values (relative change) were calculated as ((post-supplementation values minus pre-supplementation values)/pre-supplementation values*100). All differences were assessed with ANOVA adjusted for age, sex and BMI. Means ± SE.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4196000&req=5

Fig2: The relative response in fasting insulin concentrations and QUICKI index (insulin sensitivity) according to genotype. Figure legend. a) rs12953299 (A/A: n = 46, A/G: n = 100, G/G: n = 55); Delta insulin (A/A: 15.3 ± 32.0%, A/G: 1.2 ± 30.1%, G/G: 3.9 ± 26.4%), P-value for delta insulin model: p = 0.01; Delta QUICKI (A/A: -2.0 ± 4.1%, A/G: 0.4 ± 4.8%, G/G: 3.9 ± 26.4%), P-value for delta QUICKI model: p = 0.009 b) rs4925118 (T/T + C/T: n = 67, C/C: n = 134); Delta insulin (T/T + C/T: 14.1 ± 36.2%, C/C: 0.6 ± 25.3%), P-value for delta insulin model: p = 0.005; P-value for delta QUICKI model: p = 0.16 c) rs4925115 (A/A: n = 33, A/G: n = 105, G/G: n = 63); Delta insulin (A/A: 19.5 ± 34.0%, A/G: 3.4 ± 29.3%, G/G: 0.6 ± 27.0%), P-value for delta insulin model: p = 0.004; Delta QUICKI (A/A: -2.3 ± 4.2%, A/G: -0.1 ± 4.5%, 0.4 ± 4.5%), P-value for delta QUICKI model: p = 0.01. Delta values (relative change) were calculated as ((post-supplementation values minus pre-supplementation values)/pre-supplementation values*100). All differences were assessed with ANOVA adjusted for age, sex and BMI. Means ± SE.

Mentions: As shown in FigureΒ 2, the% change of fasting insulin concentrations ((post-supplementation insulin concentrations minus pre-supplementation insulin concentrations)/pre-supplementation insulin concentrations*100) following the fish oil supplementation was different according to genotypes of the three tSNPs (rs12953299, rs4925118 and rs4925115) within the SREBF1 gene, adjusted for age, sex and BMI (p = 0.01, p = 0.005 and p = 0.004, respectively). The response of fasting glucose concentrations was not different according to genotypes of the tSNPs (rs12953299, rs4925118 and rs4925115). The insulin sensitivity (QUICKI) was associated with the tSNPs rs12953299 and rs4925115 (p = 0.009 and p = 0.01, respectively) but not with rs4925118 (p = 0.16). The potential effects of total dietary n-3 PUFA intakes in the participants’ habitual diets were included as a confounding variable in these models and did not modify the associations observed (data not shown).Figure 2


SREBF1 gene variations modulate insulin sensitivity in response to a fish oil supplementation.

Bouchard-Mercier A, Rudkowska I, Lemieux S, Couture P, PΓ©russe L, Vohl MC - Lipids Health Dis (2014)

The relative response in fasting insulin concentrations and QUICKI index (insulin sensitivity) according to genotype. Figure legend. a) rs12953299 (A/A: n = 46, A/G: n = 100, G/G: n = 55); Delta insulin (A/A: 15.3 ± 32.0%, A/G: 1.2 ± 30.1%, G/G: 3.9 ± 26.4%), P-value for delta insulin model: p = 0.01; Delta QUICKI (A/A: -2.0 ± 4.1%, A/G: 0.4 ± 4.8%, G/G: 3.9 ± 26.4%), P-value for delta QUICKI model: p = 0.009 b) rs4925118 (T/T + C/T: n = 67, C/C: n = 134); Delta insulin (T/T + C/T: 14.1 ± 36.2%, C/C: 0.6 ± 25.3%), P-value for delta insulin model: p = 0.005; P-value for delta QUICKI model: p = 0.16 c) rs4925115 (A/A: n = 33, A/G: n = 105, G/G: n = 63); Delta insulin (A/A: 19.5 ± 34.0%, A/G: 3.4 ± 29.3%, G/G: 0.6 ± 27.0%), P-value for delta insulin model: p = 0.004; Delta QUICKI (A/A: -2.3 ± 4.2%, A/G: -0.1 ± 4.5%, 0.4 ± 4.5%), P-value for delta QUICKI model: p = 0.01. Delta values (relative change) were calculated as ((post-supplementation values minus pre-supplementation values)/pre-supplementation values*100). All differences were assessed with ANOVA adjusted for age, sex and BMI. Means ± SE.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4196000&req=5

Fig2: The relative response in fasting insulin concentrations and QUICKI index (insulin sensitivity) according to genotype. Figure legend. a) rs12953299 (A/A: n = 46, A/G: n = 100, G/G: n = 55); Delta insulin (A/A: 15.3 ± 32.0%, A/G: 1.2 ± 30.1%, G/G: 3.9 ± 26.4%), P-value for delta insulin model: p = 0.01; Delta QUICKI (A/A: -2.0 ± 4.1%, A/G: 0.4 ± 4.8%, G/G: 3.9 ± 26.4%), P-value for delta QUICKI model: p = 0.009 b) rs4925118 (T/T + C/T: n = 67, C/C: n = 134); Delta insulin (T/T + C/T: 14.1 ± 36.2%, C/C: 0.6 ± 25.3%), P-value for delta insulin model: p = 0.005; P-value for delta QUICKI model: p = 0.16 c) rs4925115 (A/A: n = 33, A/G: n = 105, G/G: n = 63); Delta insulin (A/A: 19.5 ± 34.0%, A/G: 3.4 ± 29.3%, G/G: 0.6 ± 27.0%), P-value for delta insulin model: p = 0.004; Delta QUICKI (A/A: -2.3 ± 4.2%, A/G: -0.1 ± 4.5%, 0.4 ± 4.5%), P-value for delta QUICKI model: p = 0.01. Delta values (relative change) were calculated as ((post-supplementation values minus pre-supplementation values)/pre-supplementation values*100). All differences were assessed with ANOVA adjusted for age, sex and BMI. Means ± SE.
Mentions: As shown in FigureΒ 2, the% change of fasting insulin concentrations ((post-supplementation insulin concentrations minus pre-supplementation insulin concentrations)/pre-supplementation insulin concentrations*100) following the fish oil supplementation was different according to genotypes of the three tSNPs (rs12953299, rs4925118 and rs4925115) within the SREBF1 gene, adjusted for age, sex and BMI (p = 0.01, p = 0.005 and p = 0.004, respectively). The response of fasting glucose concentrations was not different according to genotypes of the tSNPs (rs12953299, rs4925118 and rs4925115). The insulin sensitivity (QUICKI) was associated with the tSNPs rs12953299 and rs4925115 (p = 0.009 and p = 0.01, respectively) but not with rs4925118 (p = 0.16). The potential effects of total dietary n-3 PUFA intakes in the participants’ habitual diets were included as a confounding variable in these models and did not modify the associations observed (data not shown).Figure 2

Bottom Line: Participants (n = 210) were recruited in the greater Quebec City area and followed a 6-week fish oil supplementation protocol (5 g/day: 1.9-2.2 g EPA; 1.1 g DHA).Three tSNPs (rs12953299, rs4925118 and rs4925115) covered 100% of the known genetic variability within SREBF1 gene.The three tSNPs (rs12953299, rs4925118 and rs4925115) were associated with differences in the response of plasma insulin levels (p = 0.01, p = 0.005 and p = 0.004, respectively) and rs12953299 as well as rs4925115 were associated with the insulin sensitivity response (p = 0.009 and p = 0.01, respectively) to the fish oil supplementation, independently of the effects of age, sex and BMI.

View Article: PubMed Central - PubMed

Affiliation: Institute of Nutrition and Functional Foods (INAF), Laval University, 2440 Hochelaga Blvd,, Quebec G1V 0A6, Canada. marie-claude.vohl@fsaa.ulaval.ca.

ABSTRACT

Background: An important inter-individual variability in the response of insulin sensitivity following a fish oil supplementation has been observed. The objective was to examine the associations between single nucleotide polymorphisms (SNPs) within sterol regulatory element binding transcription factor 1 (SREBF1) gene and the response of insulin sensitivity to a fish oil supplementation.

Methods: Participants (n = 210) were recruited in the greater Quebec City area and followed a 6-week fish oil supplementation protocol (5 g/day: 1.9-2.2 g EPA; 1.1 g DHA). Insulin sensitivity was assessed by the quantitative insulin sensitivity check index (QUICKI). Three tag SNPs (tSNPs) within SREBF1 gene were genotyped according to TAQMAN methodology.

Results: Three tSNPs (rs12953299, rs4925118 and rs4925115) covered 100% of the known genetic variability within SREBF1 gene. None of the three tSNPs was associated with either baseline fasting insulin concentrations (rs12953299, rs4925118 and rs4925115) (p = 0.29, p = 0.20 and p = 0.70, respectively) or QUICKI (p = 0.20, p = 0.18 and p = 0.76, respectively). The three tSNPs (rs12953299, rs4925118 and rs4925115) were associated with differences in the response of plasma insulin levels (p = 0.01, p = 0.005 and p = 0.004, respectively) and rs12953299 as well as rs4925115 were associated with the insulin sensitivity response (p = 0.009 and p = 0.01, respectively) to the fish oil supplementation, independently of the effects of age, sex and BMI.

Conclusions: The genetic variability within SREBF1 gene has an impact on the insulin sensitivity in response to a fish oil supplementation.

Trial registration: clinicaltrials.gov: NCT01343342.

Show MeSH
Related in: MedlinePlus