Limits...
Identification of nuclear factor-κB inhibitors in the folk herb Rhizoma Menispermi via bioactivity-based ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry analysis.

Sun D, Zhou M, Ying X, Cheng B, Han Y, Nie Y, Hou Y, Bai G - BMC Complement Altern Med (2014)

Bottom Line: RM treatment significantly ameliorated Pseudomonas aeruginosa-induced acute lung inflammation and reduced levels of inflammatory mediators.Furthermore, IL-6 and IL-8 assays confirmed the anti-inflammatory effects of these potential NF-κB inhibitors, in which norsinoacutin, 6-O-methyl-laudanosoline-13-O-glucopyranoside laurifloline, dauricinoline and N-norsinoacutin-β-D-glucopyranoside were revealed as new NF-κB inhibitors.This study provided useful results for further investigation on the anti-inflammatory mechanism of RM.

View Article: PubMed Central - PubMed

Affiliation: State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China. houyy@nankai.edu.cn.

ABSTRACT

Background: Rhizoma Menispermi (RM) is the dried root of Menispermum dauricum DC, which is traditionally used to treat swelling and pain for sore throat, enteritis and rheumatic arthralgia in the clinic, but its bioactive compounds remain unclear.

Methods: In this study, RM extract was administered orally to ICR mice followed by challenging with an intratracheal Pseudomonas aeruginosa suspension. Then mortality, histological features of lung, and inflammatory cytokines were evaluated. RM treatment significantly ameliorated Pseudomonas aeruginosa-induced acute lung inflammation and reduced levels of inflammatory mediators. To screen for potential anti-inflammatory constituents of the RM extract, a simple and rapid method based on ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF MS) coupled with a luciferase reporter assay system to detect nuclear factor-κB (NF-κB) activity was established.

Results: Using this system, seven potential NF-κB inhibitors were detected, including sinomenine, norsinoacutin, N-norsinoacutin-β-D-glucopyranoside, 6-O-methyl-laudanosoline-13-O-glucopyranoside, magnoflorine, laurifloline and dauricinoline. Furthermore, IL-6 and IL-8 assays confirmed the anti-inflammatory effects of these potential NF-κB inhibitors, in which norsinoacutin, 6-O-methyl-laudanosoline-13-O-glucopyranoside laurifloline, dauricinoline and N-norsinoacutin-β-D-glucopyranoside were revealed as new NF-κB inhibitors.

Conclusion: This method of UPLC-Q/TOF coupled with the luciferase reporter assay system was initially applied to the study of RM and was demonstrated to represent a simple, rapid and practical approach to screen for anti-inflammatory compounds. This study provided useful results for further investigation on the anti-inflammatory mechanism of RM.

Show MeSH

Related in: MedlinePlus

Effect of RM on lung infection induced by theP. aeruginosaPAK strain.(A) The survival rate of mice treated with RM or Cef upon challenge with P. aeruginosa. The survival rate was assessed for 24 h; (B) lung tissue pathology slices (the light microscopic images were captured at 100× magnification); (Control) control group, (Model) model group, (Cef) positive control group, (RM-H) high dose RM group, (RM-M) middle dose RM group,(RM-L) low dose RM group. Comparing with the control group, obvious inflammatory cell infiltration in mucosa and submucosa in model group; (C) effects of RM on the production of TNF-α, IL-6, IL-8 in mouse serum.Value were expressed as the mean ± SEM (n = 6). *p < 0.05, **p < 0.01,***p<0.001, compared to the model group (,). ###p<0.001 compared to the control group.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4195958&req=5

Fig1: Effect of RM on lung infection induced by theP. aeruginosaPAK strain.(A) The survival rate of mice treated with RM or Cef upon challenge with P. aeruginosa. The survival rate was assessed for 24 h; (B) lung tissue pathology slices (the light microscopic images were captured at 100× magnification); (Control) control group, (Model) model group, (Cef) positive control group, (RM-H) high dose RM group, (RM-M) middle dose RM group,(RM-L) low dose RM group. Comparing with the control group, obvious inflammatory cell infiltration in mucosa and submucosa in model group; (C) effects of RM on the production of TNF-α, IL-6, IL-8 in mouse serum.Value were expressed as the mean ± SEM (n = 6). *p < 0.05, **p < 0.01,***p<0.001, compared to the model group (,). ###p<0.001 compared to the control group.

Mentions: The P. aeruginosa PAK strain was introduced to establish a mouse inflammation model. The survival rate was measured 4 h, 8 h, 12 h, 16 h, 20 h and 24 h after treatment with the P. aeruginosa PAK strain. The survival curve of the mice is presented in Figure 1A. Within 24 h of infection, the survival rate of the mice was only 20% in the model group, compared to 30%, 70% and 80% in the low, middle and high dose RM groups, respectively. No death was observed in the positive control group. These results suggest that RM exerts a protective effect against P. aeruginosa PAK strain lung infection.Pathologic sections of lung tissue are presented in Figure 1B. Compared to the structural integrity of the lung tissue from the control group, the lung sections from the model group displayed a widened alveolar septum, capillary congestion, and inflammatory cell infiltration around the plasma vessels. This result indicated that the infection model was successfully established. The inflammatory infiltrates were significantly alleviated in the high dose RM group, with less neutrophil recruitment and reduced histological injury. Histopathological evaluation of inflammation revealed that RM exerted anti-inflammatory effects on the mouse lung infection model.Figure 1


Identification of nuclear factor-κB inhibitors in the folk herb Rhizoma Menispermi via bioactivity-based ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry analysis.

Sun D, Zhou M, Ying X, Cheng B, Han Y, Nie Y, Hou Y, Bai G - BMC Complement Altern Med (2014)

Effect of RM on lung infection induced by theP. aeruginosaPAK strain.(A) The survival rate of mice treated with RM or Cef upon challenge with P. aeruginosa. The survival rate was assessed for 24 h; (B) lung tissue pathology slices (the light microscopic images were captured at 100× magnification); (Control) control group, (Model) model group, (Cef) positive control group, (RM-H) high dose RM group, (RM-M) middle dose RM group,(RM-L) low dose RM group. Comparing with the control group, obvious inflammatory cell infiltration in mucosa and submucosa in model group; (C) effects of RM on the production of TNF-α, IL-6, IL-8 in mouse serum.Value were expressed as the mean ± SEM (n = 6). *p < 0.05, **p < 0.01,***p<0.001, compared to the model group (,). ###p<0.001 compared to the control group.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4195958&req=5

Fig1: Effect of RM on lung infection induced by theP. aeruginosaPAK strain.(A) The survival rate of mice treated with RM or Cef upon challenge with P. aeruginosa. The survival rate was assessed for 24 h; (B) lung tissue pathology slices (the light microscopic images were captured at 100× magnification); (Control) control group, (Model) model group, (Cef) positive control group, (RM-H) high dose RM group, (RM-M) middle dose RM group,(RM-L) low dose RM group. Comparing with the control group, obvious inflammatory cell infiltration in mucosa and submucosa in model group; (C) effects of RM on the production of TNF-α, IL-6, IL-8 in mouse serum.Value were expressed as the mean ± SEM (n = 6). *p < 0.05, **p < 0.01,***p<0.001, compared to the model group (,). ###p<0.001 compared to the control group.
Mentions: The P. aeruginosa PAK strain was introduced to establish a mouse inflammation model. The survival rate was measured 4 h, 8 h, 12 h, 16 h, 20 h and 24 h after treatment with the P. aeruginosa PAK strain. The survival curve of the mice is presented in Figure 1A. Within 24 h of infection, the survival rate of the mice was only 20% in the model group, compared to 30%, 70% and 80% in the low, middle and high dose RM groups, respectively. No death was observed in the positive control group. These results suggest that RM exerts a protective effect against P. aeruginosa PAK strain lung infection.Pathologic sections of lung tissue are presented in Figure 1B. Compared to the structural integrity of the lung tissue from the control group, the lung sections from the model group displayed a widened alveolar septum, capillary congestion, and inflammatory cell infiltration around the plasma vessels. This result indicated that the infection model was successfully established. The inflammatory infiltrates were significantly alleviated in the high dose RM group, with less neutrophil recruitment and reduced histological injury. Histopathological evaluation of inflammation revealed that RM exerted anti-inflammatory effects on the mouse lung infection model.Figure 1

Bottom Line: RM treatment significantly ameliorated Pseudomonas aeruginosa-induced acute lung inflammation and reduced levels of inflammatory mediators.Furthermore, IL-6 and IL-8 assays confirmed the anti-inflammatory effects of these potential NF-κB inhibitors, in which norsinoacutin, 6-O-methyl-laudanosoline-13-O-glucopyranoside laurifloline, dauricinoline and N-norsinoacutin-β-D-glucopyranoside were revealed as new NF-κB inhibitors.This study provided useful results for further investigation on the anti-inflammatory mechanism of RM.

View Article: PubMed Central - PubMed

Affiliation: State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China. houyy@nankai.edu.cn.

ABSTRACT

Background: Rhizoma Menispermi (RM) is the dried root of Menispermum dauricum DC, which is traditionally used to treat swelling and pain for sore throat, enteritis and rheumatic arthralgia in the clinic, but its bioactive compounds remain unclear.

Methods: In this study, RM extract was administered orally to ICR mice followed by challenging with an intratracheal Pseudomonas aeruginosa suspension. Then mortality, histological features of lung, and inflammatory cytokines were evaluated. RM treatment significantly ameliorated Pseudomonas aeruginosa-induced acute lung inflammation and reduced levels of inflammatory mediators. To screen for potential anti-inflammatory constituents of the RM extract, a simple and rapid method based on ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF MS) coupled with a luciferase reporter assay system to detect nuclear factor-κB (NF-κB) activity was established.

Results: Using this system, seven potential NF-κB inhibitors were detected, including sinomenine, norsinoacutin, N-norsinoacutin-β-D-glucopyranoside, 6-O-methyl-laudanosoline-13-O-glucopyranoside, magnoflorine, laurifloline and dauricinoline. Furthermore, IL-6 and IL-8 assays confirmed the anti-inflammatory effects of these potential NF-κB inhibitors, in which norsinoacutin, 6-O-methyl-laudanosoline-13-O-glucopyranoside laurifloline, dauricinoline and N-norsinoacutin-β-D-glucopyranoside were revealed as new NF-κB inhibitors.

Conclusion: This method of UPLC-Q/TOF coupled with the luciferase reporter assay system was initially applied to the study of RM and was demonstrated to represent a simple, rapid and practical approach to screen for anti-inflammatory compounds. This study provided useful results for further investigation on the anti-inflammatory mechanism of RM.

Show MeSH
Related in: MedlinePlus