Limits...
Idiopathic scoliosis in children and adolescents: assessment with a biplanar X-ray device.

Amzallag-Bellenger E, Uyttenhove F, Nectoux E, Moraux A, Bigot J, Herbaux B, Boutry N - Insights Imaging (2014)

Bottom Line: It is a three-dimensional (3D) spinal deformity.Conventional radiography is still the modality of choice for evaluation of children and adolescents with idiopathic scoliosis, but it requires repeat radiographs until skeletal maturity is reached and does not provide information about spinal deformity in all three planes.With its specific software, this novel vertical biplanar X-ray unit provides 3D images of the spine and offers the opportunity of visualising the spinal deformity in all three planes.

View Article: PubMed Central - PubMed

Affiliation: Department of Paediatric Radiology, Jeanne de Flandre Hospital, Lille 2 University, University Hospital of Lille, Lille, France.

ABSTRACT

Unlabelled: Idiopathic scoliosis is one of the most common conditions encountered in paediatric practice. It is a three-dimensional (3D) spinal deformity. Conventional radiography is still the modality of choice for evaluation of children and adolescents with idiopathic scoliosis, but it requires repeat radiographs until skeletal maturity is reached and does not provide information about spinal deformity in all three planes. A biplanar X-ray device is a new technique that enables standing frontal and lateral radiographs of the spine to be obtained at lowered radiation doses. With its specific software, this novel vertical biplanar X-ray unit provides 3D images of the spine and offers the opportunity of visualising the spinal deformity in all three planes. This pictorial review presents our experience with this new imaging system in children and adolescents with idiopathic scoliosis.

Key points: • The biplanar X-ray device produces two orthogonal spine X-ray images in a standing position. • The biplanar X-ray device can assess idiopathic scoliosis with a lower radiation dose. • The biplanar X-ray device provides 3D images of the spine.

No MeSH data available.


Related in: MedlinePlus

Imaging technique of the EOS 2D system. The gantry is composed of two sets of X-ray tubes and detectors positioned orthogonally and supported by a mobile arm. This arm moves vertically while the patient is positioned upright at the intersection of the two X-ray fan-beams. A single scan can produce both AP and lateral radiographs of the spine, the lower limbs or the whole skeleton
© Copyright Policy - OpenAccess
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4195844&req=5

Fig1: Imaging technique of the EOS 2D system. The gantry is composed of two sets of X-ray tubes and detectors positioned orthogonally and supported by a mobile arm. This arm moves vertically while the patient is positioned upright at the intersection of the two X-ray fan-beams. A single scan can produce both AP and lateral radiographs of the spine, the lower limbs or the whole skeleton

Mentions: Using two orthogonal sources of radiation and linear detectors that are coupled together, the EOS system simultaneously produces two orthogonal X-ray images of the skeleton in the weight-bearing position. The child or the adolescent is standing upright (or sitting) in the centre of the device (i.e. at the intersection of the two X-ray fan beams) (Fig. 1). Gonadal shielding is usually not applied. Before scanning, the radiology technician defines the limits of the region of interest, in height and width, utilising to two laser beams. The exploration width of the device is limited to 50 cm (corresponding to a lateral diaphragm being wide open). Vertical scanning from head to pelvis for full spine imaging takes about 5–10 s, whereas scanning from head to toe for full body imaging takes about 15–20 s. Only AP or lateral views may also be acquired. If only frontal radiographs are required, a PA projection is used to lessen the radiation dose to the breasts and gonads. Parameters of acquisition (kilovoltage [kV] values, milliampere [mA] values and scanning speed) are variable, depending on the child’s age and weight. The radiology technician can thus choose from three presets: morphotype 1 (slim); 2 (normal) or 3 (corpulent). Acquisition parameters are about 80–90 kV and 200–250 mA for AP views; 100 kV and 250–320 mA for lateral views; scanning speed is chosen between 2 and 4 on the vendor-specific scale (ranging from 1, fast, to 8, slow). In practice, presets 1 and 2 are used for children (age, 5–12 years; weight about 30–45 kg) and adolescents (age, 13–18 years; weight about 45–70 kg) respectively; preset 3 is used only for obese adolescents (weight superior to 75 kg). Like for conventional or other digital radiography systems, child positioning is important to obtain reproducible, comparable radiographs. Among EOS system users, arm positioning is still subject to debate on lateral views because of the superimposition of both humeri on the spine and possible shift in sagittal spinal alignment. The best positioning would be elbows flexed with fists or fingers resting on clavicles or on the cheeks [19, 20]. In our experience, however, this position is not always easy to maintain; at our hospital, when both AP and lateral views are needed, children and adolescents are positioned with the arms supported in front of them, on a bar or on the device wall.Fig. 1


Idiopathic scoliosis in children and adolescents: assessment with a biplanar X-ray device.

Amzallag-Bellenger E, Uyttenhove F, Nectoux E, Moraux A, Bigot J, Herbaux B, Boutry N - Insights Imaging (2014)

Imaging technique of the EOS 2D system. The gantry is composed of two sets of X-ray tubes and detectors positioned orthogonally and supported by a mobile arm. This arm moves vertically while the patient is positioned upright at the intersection of the two X-ray fan-beams. A single scan can produce both AP and lateral radiographs of the spine, the lower limbs or the whole skeleton
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4195844&req=5

Fig1: Imaging technique of the EOS 2D system. The gantry is composed of two sets of X-ray tubes and detectors positioned orthogonally and supported by a mobile arm. This arm moves vertically while the patient is positioned upright at the intersection of the two X-ray fan-beams. A single scan can produce both AP and lateral radiographs of the spine, the lower limbs or the whole skeleton
Mentions: Using two orthogonal sources of radiation and linear detectors that are coupled together, the EOS system simultaneously produces two orthogonal X-ray images of the skeleton in the weight-bearing position. The child or the adolescent is standing upright (or sitting) in the centre of the device (i.e. at the intersection of the two X-ray fan beams) (Fig. 1). Gonadal shielding is usually not applied. Before scanning, the radiology technician defines the limits of the region of interest, in height and width, utilising to two laser beams. The exploration width of the device is limited to 50 cm (corresponding to a lateral diaphragm being wide open). Vertical scanning from head to pelvis for full spine imaging takes about 5–10 s, whereas scanning from head to toe for full body imaging takes about 15–20 s. Only AP or lateral views may also be acquired. If only frontal radiographs are required, a PA projection is used to lessen the radiation dose to the breasts and gonads. Parameters of acquisition (kilovoltage [kV] values, milliampere [mA] values and scanning speed) are variable, depending on the child’s age and weight. The radiology technician can thus choose from three presets: morphotype 1 (slim); 2 (normal) or 3 (corpulent). Acquisition parameters are about 80–90 kV and 200–250 mA for AP views; 100 kV and 250–320 mA for lateral views; scanning speed is chosen between 2 and 4 on the vendor-specific scale (ranging from 1, fast, to 8, slow). In practice, presets 1 and 2 are used for children (age, 5–12 years; weight about 30–45 kg) and adolescents (age, 13–18 years; weight about 45–70 kg) respectively; preset 3 is used only for obese adolescents (weight superior to 75 kg). Like for conventional or other digital radiography systems, child positioning is important to obtain reproducible, comparable radiographs. Among EOS system users, arm positioning is still subject to debate on lateral views because of the superimposition of both humeri on the spine and possible shift in sagittal spinal alignment. The best positioning would be elbows flexed with fists or fingers resting on clavicles or on the cheeks [19, 20]. In our experience, however, this position is not always easy to maintain; at our hospital, when both AP and lateral views are needed, children and adolescents are positioned with the arms supported in front of them, on a bar or on the device wall.Fig. 1

Bottom Line: It is a three-dimensional (3D) spinal deformity.Conventional radiography is still the modality of choice for evaluation of children and adolescents with idiopathic scoliosis, but it requires repeat radiographs until skeletal maturity is reached and does not provide information about spinal deformity in all three planes.With its specific software, this novel vertical biplanar X-ray unit provides 3D images of the spine and offers the opportunity of visualising the spinal deformity in all three planes.

View Article: PubMed Central - PubMed

Affiliation: Department of Paediatric Radiology, Jeanne de Flandre Hospital, Lille 2 University, University Hospital of Lille, Lille, France.

ABSTRACT

Unlabelled: Idiopathic scoliosis is one of the most common conditions encountered in paediatric practice. It is a three-dimensional (3D) spinal deformity. Conventional radiography is still the modality of choice for evaluation of children and adolescents with idiopathic scoliosis, but it requires repeat radiographs until skeletal maturity is reached and does not provide information about spinal deformity in all three planes. A biplanar X-ray device is a new technique that enables standing frontal and lateral radiographs of the spine to be obtained at lowered radiation doses. With its specific software, this novel vertical biplanar X-ray unit provides 3D images of the spine and offers the opportunity of visualising the spinal deformity in all three planes. This pictorial review presents our experience with this new imaging system in children and adolescents with idiopathic scoliosis.

Key points: • The biplanar X-ray device produces two orthogonal spine X-ray images in a standing position. • The biplanar X-ray device can assess idiopathic scoliosis with a lower radiation dose. • The biplanar X-ray device provides 3D images of the spine.

No MeSH data available.


Related in: MedlinePlus