Limits...
Mechanisms of object recognition: what we have learned from pigeons.

Soto FA, Wasserman EA - Front Neural Circuits (2014)

Bottom Line: The outcome is that pigeons are likely to be the non-primate species for which the computational mechanisms of object recognition are best understood.The fact that we have a good idea of which aspects of object recognition differ in people and pigeons should be seen as an advantage over other animal models.From this perspective, we suggest that there is much to learn about human object recognition from studying the "simple" brains of pigeons.

View Article: PubMed Central - PubMed

Affiliation: Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, USA.

ABSTRACT
Behavioral studies of object recognition in pigeons have been conducted for 50 years, yielding a large body of data. Recent work has been directed toward synthesizing this evidence and understanding the visual, associative, and cognitive mechanisms that are involved. The outcome is that pigeons are likely to be the non-primate species for which the computational mechanisms of object recognition are best understood. Here, we review this research and suggest that a core set of mechanisms for object recognition might be present in all vertebrates, including pigeons and people, making pigeons an excellent candidate model to study the neural mechanisms of object recognition. Behavioral and computational evidence suggests that error-driven learning participates in object category learning by pigeons and people, and recent neuroscientific research suggests that the basal ganglia, which are homologous in these species, may implement error-driven learning of stimulus-response associations. Furthermore, learning of abstract category representations can be observed in pigeons and other vertebrates. Finally, there is evidence that feedforward visual processing, a central mechanism in models of object recognition in the primate ventral stream, plays a role in object recognition by pigeons. We also highlight differences between pigeons and people in object recognition abilities, and propose candidate adaptive specializations which may explain them, such as holistic face processing and rule-based category learning in primates. From a modern comparative perspective, such specializations are to be expected regardless of the model species under study. The fact that we have a good idea of which aspects of object recognition differ in people and pigeons should be seen as an advantage over other animal models. From this perspective, we suggest that there is much to learn about human object recognition from studying the "simple" brains of pigeons.

Show MeSH

Related in: MedlinePlus

Examples of the stimuli used by Van Hamme et al. (1992) to study transfer of recognition performance from partial contours to their complementary contours (A), together with the performance of pigeons (B) and a hierarchical model (C) during test.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4195317&req=5

Figure 10: Examples of the stimuli used by Van Hamme et al. (1992) to study transfer of recognition performance from partial contours to their complementary contours (A), together with the performance of pigeons (B) and a hierarchical model (C) during test.

Mentions: Several experiments have found evidence that pigeons represent not only local shape properties, but also the spatial structure of objects (Van Hamme et al., 1992; Wasserman et al., 1993; Kirkpatrick-Steger and Wasserman, 1996; Kirkpatrick-Steger et al., 1998). In one study, Van Hamme et al. (1992) trained pigeons to recognize line drawings of objects, similar to those shown in Figure 10A, in which half of an object’s contour was deleted. This technique allowed the experimenters to train the pigeons with one contour image and to test them with its complement, which shared no local features with the training stimulus. As shown in Figure 10B, pigeons recognized these complementary contours with considerable accuracy, suggesting that their visual system could infer object structure from the partial contours seen during training.


Mechanisms of object recognition: what we have learned from pigeons.

Soto FA, Wasserman EA - Front Neural Circuits (2014)

Examples of the stimuli used by Van Hamme et al. (1992) to study transfer of recognition performance from partial contours to their complementary contours (A), together with the performance of pigeons (B) and a hierarchical model (C) during test.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4195317&req=5

Figure 10: Examples of the stimuli used by Van Hamme et al. (1992) to study transfer of recognition performance from partial contours to their complementary contours (A), together with the performance of pigeons (B) and a hierarchical model (C) during test.
Mentions: Several experiments have found evidence that pigeons represent not only local shape properties, but also the spatial structure of objects (Van Hamme et al., 1992; Wasserman et al., 1993; Kirkpatrick-Steger and Wasserman, 1996; Kirkpatrick-Steger et al., 1998). In one study, Van Hamme et al. (1992) trained pigeons to recognize line drawings of objects, similar to those shown in Figure 10A, in which half of an object’s contour was deleted. This technique allowed the experimenters to train the pigeons with one contour image and to test them with its complement, which shared no local features with the training stimulus. As shown in Figure 10B, pigeons recognized these complementary contours with considerable accuracy, suggesting that their visual system could infer object structure from the partial contours seen during training.

Bottom Line: The outcome is that pigeons are likely to be the non-primate species for which the computational mechanisms of object recognition are best understood.The fact that we have a good idea of which aspects of object recognition differ in people and pigeons should be seen as an advantage over other animal models.From this perspective, we suggest that there is much to learn about human object recognition from studying the "simple" brains of pigeons.

View Article: PubMed Central - PubMed

Affiliation: Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, USA.

ABSTRACT
Behavioral studies of object recognition in pigeons have been conducted for 50 years, yielding a large body of data. Recent work has been directed toward synthesizing this evidence and understanding the visual, associative, and cognitive mechanisms that are involved. The outcome is that pigeons are likely to be the non-primate species for which the computational mechanisms of object recognition are best understood. Here, we review this research and suggest that a core set of mechanisms for object recognition might be present in all vertebrates, including pigeons and people, making pigeons an excellent candidate model to study the neural mechanisms of object recognition. Behavioral and computational evidence suggests that error-driven learning participates in object category learning by pigeons and people, and recent neuroscientific research suggests that the basal ganglia, which are homologous in these species, may implement error-driven learning of stimulus-response associations. Furthermore, learning of abstract category representations can be observed in pigeons and other vertebrates. Finally, there is evidence that feedforward visual processing, a central mechanism in models of object recognition in the primate ventral stream, plays a role in object recognition by pigeons. We also highlight differences between pigeons and people in object recognition abilities, and propose candidate adaptive specializations which may explain them, such as holistic face processing and rule-based category learning in primates. From a modern comparative perspective, such specializations are to be expected regardless of the model species under study. The fact that we have a good idea of which aspects of object recognition differ in people and pigeons should be seen as an advantage over other animal models. From this perspective, we suggest that there is much to learn about human object recognition from studying the "simple" brains of pigeons.

Show MeSH
Related in: MedlinePlus