Limits...
ECoG high gamma activity reveals distinct cortical representations of lyrics passages, harmonic and timbre-related changes in a rock song.

Sturm I, Blankertz B, Potes C, Schalk G, Curio G - Front Hum Neurosci (2014)

Bottom Line: The distinct cortical activations to vocal speech-related content embedded in instrumental music directly demonstrate that song integrated in instrumental music represents a distinct dimension in complex music.In contrast, in the speech condition, the full sound envelope was reflected in the high gamma response rather than the onset or offset of the vocal lyrics.This demonstrates how the contributions of stimulus features that modulate the brain response differ across the two examples of a full-length natural stimulus, which suggests a context-dependent feature selection in the processing of complex auditory stimuli.

View Article: PubMed Central - PubMed

Affiliation: Berlin School of Mind and Brain, Humboldt Universität zu Berlin Berlin, Germany ; Neurotechnology Group, Department of Electrical Engineering and Computer Science, Berlin Institute of Technology Berlin, Germany ; Neurophysics Group, Department of Neurology and Clinical Neurophysiology, Charité - University Medicine Berlin Berlin, Germany.

ABSTRACT
Listening to music moves our minds and moods, stirring interest in its neural underpinnings. A multitude of compositional features drives the appeal of natural music. How such original music, where a composer's opus is not manipulated for experimental purposes, engages a listener's brain has not been studied until recently. Here, we report an in-depth analysis of two electrocorticographic (ECoG) data sets obtained over the left hemisphere in ten patients during presentation of either a rock song or a read-out narrative. First, the time courses of five acoustic features (intensity, presence/absence of vocals with lyrics, spectral centroid, harmonic change, and pulse clarity) were extracted from the audio tracks and found to be correlated with each other to varying degrees. In a second step, we uncovered the specific impact of each musical feature on ECoG high-gamma power (70-170 Hz) by calculating partial correlations to remove the influence of the other four features. In the music condition, the onset and offset of vocal lyrics in ongoing instrumental music was consistently identified within the group as the dominant driver for ECoG high-gamma power changes over temporal auditory areas, while concurrently subject-individual activation spots were identified for sound intensity, timbral, and harmonic features. The distinct cortical activations to vocal speech-related content embedded in instrumental music directly demonstrate that song integrated in instrumental music represents a distinct dimension in complex music. In contrast, in the speech condition, the full sound envelope was reflected in the high gamma response rather than the onset or offset of the vocal lyrics. This demonstrates how the contributions of stimulus features that modulate the brain response differ across the two examples of a full-length natural stimulus, which suggests a context-dependent feature selection in the processing of complex auditory stimuli.

No MeSH data available.


Related in: MedlinePlus

Single subjects (individual brain models), speech condition: Cortical distribution of significant correlation with each of the five acoustic features after removing the influence of the remaining four features by calculating partial correlation coefficients. A value of 2 corresponds to a p-value of 0.01. Correlation coefficients determined as significant by permutation tests ranged between r = 0.06 and r = 0.16.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4195312&req=5

Figure 5: Single subjects (individual brain models), speech condition: Cortical distribution of significant correlation with each of the five acoustic features after removing the influence of the remaining four features by calculating partial correlation coefficients. A value of 2 corresponds to a p-value of 0.01. Correlation coefficients determined as significant by permutation tests ranged between r = 0.06 and r = 0.16.

Mentions: Figure 5 depicts the cortical distribution of significant partial correlation of ECoG high-gamma features with each of the five acoustic features for the natural speech stimuli at the level of each individual patient. Differing from the music condition, the feature that is reflected most consistently within the group is sound intensity with significant correlation in 6/10 subjects (S1, S2, S3, S4, S5, S9, and S10). In all of them, the focus of correlation is located on the pSTG. Beyond that, significant correlation is present on the inferior/medial temporal gyrus (S1, S2), on the inferior frontal gyrus (S3) and on the precentral cortex (S5). For the feature spectral centroid, significant correlations are present only in three subjects on the superior and medial temporal gyrus. Of these, subject S10 is the only subject with significant correlation for spectral centroid in, both the music and the speech condition. For harmonic change, significant correlation is present only in subject S4 on the inferior frontal gyrus (IFG). For pulse clarity, no significant correlation with ECoG high gamma features is present.


ECoG high gamma activity reveals distinct cortical representations of lyrics passages, harmonic and timbre-related changes in a rock song.

Sturm I, Blankertz B, Potes C, Schalk G, Curio G - Front Hum Neurosci (2014)

Single subjects (individual brain models), speech condition: Cortical distribution of significant correlation with each of the five acoustic features after removing the influence of the remaining four features by calculating partial correlation coefficients. A value of 2 corresponds to a p-value of 0.01. Correlation coefficients determined as significant by permutation tests ranged between r = 0.06 and r = 0.16.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4195312&req=5

Figure 5: Single subjects (individual brain models), speech condition: Cortical distribution of significant correlation with each of the five acoustic features after removing the influence of the remaining four features by calculating partial correlation coefficients. A value of 2 corresponds to a p-value of 0.01. Correlation coefficients determined as significant by permutation tests ranged between r = 0.06 and r = 0.16.
Mentions: Figure 5 depicts the cortical distribution of significant partial correlation of ECoG high-gamma features with each of the five acoustic features for the natural speech stimuli at the level of each individual patient. Differing from the music condition, the feature that is reflected most consistently within the group is sound intensity with significant correlation in 6/10 subjects (S1, S2, S3, S4, S5, S9, and S10). In all of them, the focus of correlation is located on the pSTG. Beyond that, significant correlation is present on the inferior/medial temporal gyrus (S1, S2), on the inferior frontal gyrus (S3) and on the precentral cortex (S5). For the feature spectral centroid, significant correlations are present only in three subjects on the superior and medial temporal gyrus. Of these, subject S10 is the only subject with significant correlation for spectral centroid in, both the music and the speech condition. For harmonic change, significant correlation is present only in subject S4 on the inferior frontal gyrus (IFG). For pulse clarity, no significant correlation with ECoG high gamma features is present.

Bottom Line: The distinct cortical activations to vocal speech-related content embedded in instrumental music directly demonstrate that song integrated in instrumental music represents a distinct dimension in complex music.In contrast, in the speech condition, the full sound envelope was reflected in the high gamma response rather than the onset or offset of the vocal lyrics.This demonstrates how the contributions of stimulus features that modulate the brain response differ across the two examples of a full-length natural stimulus, which suggests a context-dependent feature selection in the processing of complex auditory stimuli.

View Article: PubMed Central - PubMed

Affiliation: Berlin School of Mind and Brain, Humboldt Universität zu Berlin Berlin, Germany ; Neurotechnology Group, Department of Electrical Engineering and Computer Science, Berlin Institute of Technology Berlin, Germany ; Neurophysics Group, Department of Neurology and Clinical Neurophysiology, Charité - University Medicine Berlin Berlin, Germany.

ABSTRACT
Listening to music moves our minds and moods, stirring interest in its neural underpinnings. A multitude of compositional features drives the appeal of natural music. How such original music, where a composer's opus is not manipulated for experimental purposes, engages a listener's brain has not been studied until recently. Here, we report an in-depth analysis of two electrocorticographic (ECoG) data sets obtained over the left hemisphere in ten patients during presentation of either a rock song or a read-out narrative. First, the time courses of five acoustic features (intensity, presence/absence of vocals with lyrics, spectral centroid, harmonic change, and pulse clarity) were extracted from the audio tracks and found to be correlated with each other to varying degrees. In a second step, we uncovered the specific impact of each musical feature on ECoG high-gamma power (70-170 Hz) by calculating partial correlations to remove the influence of the other four features. In the music condition, the onset and offset of vocal lyrics in ongoing instrumental music was consistently identified within the group as the dominant driver for ECoG high-gamma power changes over temporal auditory areas, while concurrently subject-individual activation spots were identified for sound intensity, timbral, and harmonic features. The distinct cortical activations to vocal speech-related content embedded in instrumental music directly demonstrate that song integrated in instrumental music represents a distinct dimension in complex music. In contrast, in the speech condition, the full sound envelope was reflected in the high gamma response rather than the onset or offset of the vocal lyrics. This demonstrates how the contributions of stimulus features that modulate the brain response differ across the two examples of a full-length natural stimulus, which suggests a context-dependent feature selection in the processing of complex auditory stimuli.

No MeSH data available.


Related in: MedlinePlus