Limits...
Disentangling the attention network test: behavioral, event related potentials, and neural source analyses.

Galvao-Carmona A, González-Rosa JJ, Hidalgo-Muñoz AR, Páramo D, Benítez ML, Izquierdo G, Vázquez-Marrufo M - Front Hum Neurosci (2014)

Bottom Line: The study of the attentional system remains a challenge for current neuroscience.In particular, it is highly relevant that several interpretations about attentional impairment have arisen from these calculations in diverse pathologies.The ANT is useful as a paradigm to study specific attentional mechanisms and their interactions.

View Article: PubMed Central - PubMed

Affiliation: Psychophysiology Unit (Lab B508), Department of Experimental Psychology, Faculty of Psychology, University of Seville Seville, Spain.

ABSTRACT

Background: The study of the attentional system remains a challenge for current neuroscience. The "Attention Network Test" (ANT) was designed to study simultaneously three different attentional networks (alerting, orienting, and executive) based in subtraction of different experimental conditions. However, some studies recommend caution with these calculations due to the interactions between the attentional networks. In particular, it is highly relevant that several interpretations about attentional impairment have arisen from these calculations in diverse pathologies. Event related potentials (ERPs) and neural source analysis can be applied to disentangle the relationships between these attentional networks not specifically shown by behavioral measures.

Results: This study shows that there is a basic level of alerting (tonic alerting) in the no cue (NC) condition, represented by a slow negative trend in the ERP trace prior to the onset of the target stimuli. A progressive increase in the CNV amplitude related to the amount of information provided by the cue conditions is also shown. Neural source analysis reveals specific modulations of the CNV related to a task-related expectancy presented in the NC condition; a late modulation triggered by the central cue (CC) condition and probably representing a generic motor preparation; and an early and late modulation for spatial cue (SC) condition suggesting specific motor and sensory preactivation. Finally, the first component in the information processing of the target stimuli modulated by the interaction between orienting network and the executive system can be represented by N1.

Conclusions: The ANT is useful as a paradigm to study specific attentional mechanisms and their interactions. However, calculation of network effects is based in subtractions with non-comparable experimental conditions, as evidenced by the present data, which can induce misinterpretations in the study of the attentional capacity in human subjects.

No MeSH data available.


Related in: MedlinePlus

Contingent negative variation modulations at Cz electrode and topographical maps. Abbreviations: ms, milliseconds; μV, microvolts.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4195286&req=5

Figure 4: Contingent negative variation modulations at Cz electrode and topographical maps. Abbreviations: ms, milliseconds; μV, microvolts.

Mentions: All the participants had the maximum amplitude value for the CNV in the FcZ or Cz derivations for every cue condition in each interval analyzed. Amplitude analysis of modulations in the CNV component gave statistical differences for diverse factors or interactions between them: Cue factor [F(2, 48) = 16.62; p < 0.001], Cue and interval factors [F(8, 192) = 17.87, p < 0.001], Interval, Cue, and Anteroposterior location factors [F(40, 960) = 6.79; p < 0.001] and also Interval, Cue, and Medial-Lateral Position factors [F(48, 1152) = 4.35; p < 0.001] (see Figure 4 and Table 2). Post-hoc analysis confirmed that the reasons of these significant effects were a higher amplitude (more negative) of the CNV for the SC condition than the NC and CC conditions in all intervals analyzed (500 ms previous to the onset of the target) (p < 0.05 for almost all electrodes analyzed, except Pz, POz, and PO2 electrodes in the −500 to −400 ms interval analyzed) (see Figures 2,4). The CC condition also had a higher negative amplitude value than the NC condition in the 300 ms before target onset (p < 0.05 for most electrodes analyzed, except F5, F3, F1, F2, F4, F6, FC5, FC3, FC6, C6, P5, P6, POz, and PO2 in the −300 to −200 ms interval; F5, F4, F6, FC3, FC6, and P3 electrodes in the −200 to −100 ms interval; and F5, F6, FC3, and FC6 electrodes in the −100 to 0 ms interval analyzed).


Disentangling the attention network test: behavioral, event related potentials, and neural source analyses.

Galvao-Carmona A, González-Rosa JJ, Hidalgo-Muñoz AR, Páramo D, Benítez ML, Izquierdo G, Vázquez-Marrufo M - Front Hum Neurosci (2014)

Contingent negative variation modulations at Cz electrode and topographical maps. Abbreviations: ms, milliseconds; μV, microvolts.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4195286&req=5

Figure 4: Contingent negative variation modulations at Cz electrode and topographical maps. Abbreviations: ms, milliseconds; μV, microvolts.
Mentions: All the participants had the maximum amplitude value for the CNV in the FcZ or Cz derivations for every cue condition in each interval analyzed. Amplitude analysis of modulations in the CNV component gave statistical differences for diverse factors or interactions between them: Cue factor [F(2, 48) = 16.62; p < 0.001], Cue and interval factors [F(8, 192) = 17.87, p < 0.001], Interval, Cue, and Anteroposterior location factors [F(40, 960) = 6.79; p < 0.001] and also Interval, Cue, and Medial-Lateral Position factors [F(48, 1152) = 4.35; p < 0.001] (see Figure 4 and Table 2). Post-hoc analysis confirmed that the reasons of these significant effects were a higher amplitude (more negative) of the CNV for the SC condition than the NC and CC conditions in all intervals analyzed (500 ms previous to the onset of the target) (p < 0.05 for almost all electrodes analyzed, except Pz, POz, and PO2 electrodes in the −500 to −400 ms interval analyzed) (see Figures 2,4). The CC condition also had a higher negative amplitude value than the NC condition in the 300 ms before target onset (p < 0.05 for most electrodes analyzed, except F5, F3, F1, F2, F4, F6, FC5, FC3, FC6, C6, P5, P6, POz, and PO2 in the −300 to −200 ms interval; F5, F4, F6, FC3, FC6, and P3 electrodes in the −200 to −100 ms interval; and F5, F6, FC3, and FC6 electrodes in the −100 to 0 ms interval analyzed).

Bottom Line: The study of the attentional system remains a challenge for current neuroscience.In particular, it is highly relevant that several interpretations about attentional impairment have arisen from these calculations in diverse pathologies.The ANT is useful as a paradigm to study specific attentional mechanisms and their interactions.

View Article: PubMed Central - PubMed

Affiliation: Psychophysiology Unit (Lab B508), Department of Experimental Psychology, Faculty of Psychology, University of Seville Seville, Spain.

ABSTRACT

Background: The study of the attentional system remains a challenge for current neuroscience. The "Attention Network Test" (ANT) was designed to study simultaneously three different attentional networks (alerting, orienting, and executive) based in subtraction of different experimental conditions. However, some studies recommend caution with these calculations due to the interactions between the attentional networks. In particular, it is highly relevant that several interpretations about attentional impairment have arisen from these calculations in diverse pathologies. Event related potentials (ERPs) and neural source analysis can be applied to disentangle the relationships between these attentional networks not specifically shown by behavioral measures.

Results: This study shows that there is a basic level of alerting (tonic alerting) in the no cue (NC) condition, represented by a slow negative trend in the ERP trace prior to the onset of the target stimuli. A progressive increase in the CNV amplitude related to the amount of information provided by the cue conditions is also shown. Neural source analysis reveals specific modulations of the CNV related to a task-related expectancy presented in the NC condition; a late modulation triggered by the central cue (CC) condition and probably representing a generic motor preparation; and an early and late modulation for spatial cue (SC) condition suggesting specific motor and sensory preactivation. Finally, the first component in the information processing of the target stimuli modulated by the interaction between orienting network and the executive system can be represented by N1.

Conclusions: The ANT is useful as a paradigm to study specific attentional mechanisms and their interactions. However, calculation of network effects is based in subtractions with non-comparable experimental conditions, as evidenced by the present data, which can induce misinterpretations in the study of the attentional capacity in human subjects.

No MeSH data available.


Related in: MedlinePlus