Limits...
The auditory brain-stem response to complex sounds: a potential biomarker for guiding treatment of psychosis.

Tarasenko MA, Swerdlow NR, Makeig S, Braff DL, Light GA - Front Psychiatry (2014)

Bottom Line: For many patients, cognitive remediation approaches have yielded encouraging results.Nevertheless, therapeutic response is variable, and outcome studies consistently identify individuals who respond minimally to these interventions.Biomarkers that can assist in identifying patients likely to benefit from particular forms of cognitive remediation are needed.

View Article: PubMed Central - PubMed

Affiliation: VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System , La Jolla, CA , USA ; Department of Psychiatry, University of California San Diego , La Jolla, CA , USA.

ABSTRACT
Cognitive deficits limit psychosocial functioning in schizophrenia. For many patients, cognitive remediation approaches have yielded encouraging results. Nevertheless, therapeutic response is variable, and outcome studies consistently identify individuals who respond minimally to these interventions. Biomarkers that can assist in identifying patients likely to benefit from particular forms of cognitive remediation are needed. Here, we describe an event-related potential (ERP) biomarker - the auditory brain-stem response (ABR) to complex sounds (cABR) - that appears to be particularly well-suited for predicting response to at least one form of cognitive remediation that targets auditory information processing. Uniquely, the cABR quantifies the fidelity of sound encoded at the level of the brainstem and midbrain. This ERP biomarker has revealed auditory processing abnormalities in various neurodevelopmental disorders, correlates with functioning across several cognitive domains, and appears to be responsive to targeted auditory training. We present preliminary cABR data from 18 schizophrenia patients and propose further investigation of this biomarker for predicting and tracking response to cognitive interventions.

No MeSH data available.


Related in: MedlinePlus

Grand average cABR from 18 schizophrenia patients. Black line is average cABR from Cz; peaks are named in accordance with convention [e.g. (27)]. Blue line represents “da” stimulus sound wave, 200 Hz low-pass filtered to better illustrate similarities between cABR and stimulus. Sound wave has also been shifted forward approximately six milliseconds to account for transmission time from cochlea to brainstem. Peaks V–A, C, and O are transient features of the cABR, corresponding with stop consonant onset, consonant-vowel formant transition, and offset of voicing, respectively. Peaks D, E, and F comprise the sustained frequency-following response (FFR) of the vowel sound (Tarasenko et al., in preparation).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4195270&req=5

Figure 1: Grand average cABR from 18 schizophrenia patients. Black line is average cABR from Cz; peaks are named in accordance with convention [e.g. (27)]. Blue line represents “da” stimulus sound wave, 200 Hz low-pass filtered to better illustrate similarities between cABR and stimulus. Sound wave has also been shifted forward approximately six milliseconds to account for transmission time from cochlea to brainstem. Peaks V–A, C, and O are transient features of the cABR, corresponding with stop consonant onset, consonant-vowel formant transition, and offset of voicing, respectively. Peaks D, E, and F comprise the sustained frequency-following response (FFR) of the vowel sound (Tarasenko et al., in preparation).

Mentions: The complex auditory brain-stem response (cABR), shown in Figure 1, is an event-related potential (ERP) with an onset approximately 6 ms after presentation of an acoustically complex sound. Its peak amplitudes and latencies correspond with the acoustic properties of its evoking stimulus (23, 24), and it is thought to provide an objective index of the brainstem and midbrain’s representation of complex sounds [cf. Ref. (25)]. Although cABRs can be evoked in response to various types of complex stimuli, here, we primarily focus on those evoked by consonant-vowel speech sounds (e.g., /da/or/mi/). As illustrated in Figure 1, portions of the cABR uniquely correspond to speech stimulus parameters – namely, the stop consonant onset, consonant-to-vowel formant transition, frequency-following response to the vowel sound, and offset of voicing. Neural representation of stimulus pitch, timing, and timber can be derived from the waveform, with high correlation between cABR and stimulus suggesting accurate encoding of sound (25–27). Abnormal cABRs can be characterized by a number of features including small peak amplitudes and long peak latencies relative to the stimulus sound wave (i.e., small stimulus-to-response correlation), low signal-to-noise ratio, weak phase-locking activity, and response variability over time. Such abnormalities have been demonstrated in a number of clinical conditions, including specific language impairment, dyslexia, and autism (25, 28, 29). Older adults have also demonstrated abnormalities in comparison with their younger counterparts (30, 31). Perhaps the most compelling argument for investigating the cABR in schizophrenia comes from Russo et al., who showed that children with autism exhibit abnormal cABRs in the context of intact click-ABRs (29), suggesting that speech and perhaps other complex sounds may offer improved sensitivity over traditional click-ABR measures for detecting brainstem and midbrain dysfunction.


The auditory brain-stem response to complex sounds: a potential biomarker for guiding treatment of psychosis.

Tarasenko MA, Swerdlow NR, Makeig S, Braff DL, Light GA - Front Psychiatry (2014)

Grand average cABR from 18 schizophrenia patients. Black line is average cABR from Cz; peaks are named in accordance with convention [e.g. (27)]. Blue line represents “da” stimulus sound wave, 200 Hz low-pass filtered to better illustrate similarities between cABR and stimulus. Sound wave has also been shifted forward approximately six milliseconds to account for transmission time from cochlea to brainstem. Peaks V–A, C, and O are transient features of the cABR, corresponding with stop consonant onset, consonant-vowel formant transition, and offset of voicing, respectively. Peaks D, E, and F comprise the sustained frequency-following response (FFR) of the vowel sound (Tarasenko et al., in preparation).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4195270&req=5

Figure 1: Grand average cABR from 18 schizophrenia patients. Black line is average cABR from Cz; peaks are named in accordance with convention [e.g. (27)]. Blue line represents “da” stimulus sound wave, 200 Hz low-pass filtered to better illustrate similarities between cABR and stimulus. Sound wave has also been shifted forward approximately six milliseconds to account for transmission time from cochlea to brainstem. Peaks V–A, C, and O are transient features of the cABR, corresponding with stop consonant onset, consonant-vowel formant transition, and offset of voicing, respectively. Peaks D, E, and F comprise the sustained frequency-following response (FFR) of the vowel sound (Tarasenko et al., in preparation).
Mentions: The complex auditory brain-stem response (cABR), shown in Figure 1, is an event-related potential (ERP) with an onset approximately 6 ms after presentation of an acoustically complex sound. Its peak amplitudes and latencies correspond with the acoustic properties of its evoking stimulus (23, 24), and it is thought to provide an objective index of the brainstem and midbrain’s representation of complex sounds [cf. Ref. (25)]. Although cABRs can be evoked in response to various types of complex stimuli, here, we primarily focus on those evoked by consonant-vowel speech sounds (e.g., /da/or/mi/). As illustrated in Figure 1, portions of the cABR uniquely correspond to speech stimulus parameters – namely, the stop consonant onset, consonant-to-vowel formant transition, frequency-following response to the vowel sound, and offset of voicing. Neural representation of stimulus pitch, timing, and timber can be derived from the waveform, with high correlation between cABR and stimulus suggesting accurate encoding of sound (25–27). Abnormal cABRs can be characterized by a number of features including small peak amplitudes and long peak latencies relative to the stimulus sound wave (i.e., small stimulus-to-response correlation), low signal-to-noise ratio, weak phase-locking activity, and response variability over time. Such abnormalities have been demonstrated in a number of clinical conditions, including specific language impairment, dyslexia, and autism (25, 28, 29). Older adults have also demonstrated abnormalities in comparison with their younger counterparts (30, 31). Perhaps the most compelling argument for investigating the cABR in schizophrenia comes from Russo et al., who showed that children with autism exhibit abnormal cABRs in the context of intact click-ABRs (29), suggesting that speech and perhaps other complex sounds may offer improved sensitivity over traditional click-ABR measures for detecting brainstem and midbrain dysfunction.

Bottom Line: For many patients, cognitive remediation approaches have yielded encouraging results.Nevertheless, therapeutic response is variable, and outcome studies consistently identify individuals who respond minimally to these interventions.Biomarkers that can assist in identifying patients likely to benefit from particular forms of cognitive remediation are needed.

View Article: PubMed Central - PubMed

Affiliation: VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System , La Jolla, CA , USA ; Department of Psychiatry, University of California San Diego , La Jolla, CA , USA.

ABSTRACT
Cognitive deficits limit psychosocial functioning in schizophrenia. For many patients, cognitive remediation approaches have yielded encouraging results. Nevertheless, therapeutic response is variable, and outcome studies consistently identify individuals who respond minimally to these interventions. Biomarkers that can assist in identifying patients likely to benefit from particular forms of cognitive remediation are needed. Here, we describe an event-related potential (ERP) biomarker - the auditory brain-stem response (ABR) to complex sounds (cABR) - that appears to be particularly well-suited for predicting response to at least one form of cognitive remediation that targets auditory information processing. Uniquely, the cABR quantifies the fidelity of sound encoded at the level of the brainstem and midbrain. This ERP biomarker has revealed auditory processing abnormalities in various neurodevelopmental disorders, correlates with functioning across several cognitive domains, and appears to be responsive to targeted auditory training. We present preliminary cABR data from 18 schizophrenia patients and propose further investigation of this biomarker for predicting and tracking response to cognitive interventions.

No MeSH data available.


Related in: MedlinePlus