Limits...
Disease dynamics and potential mitigation among restored and wild staghorn coral, Acropora cervicornis.

Miller MW, Lohr KE, Cameron CM, Williams DE, Peters EC - PeerJ (2014)

Bottom Line: Disease had devastating effects on both wild and restored populations, but dynamics were highly variable and appeared to be site-specific with no significant differences in disease prevalence between wild versus restored sites.No histological differences were found between disease lesions with gross signs fitting literature descriptions of white-band disease (WBD) and rapid tissue loss (RTL).Overall, our results do not support differing disease quality, quantity, dynamics, nor health management strategies between restored and wild colonies of A. cervicornis in the Florida Keys.

View Article: PubMed Central - HTML - PubMed

Affiliation: NOAA-National Marine Fisheries Service, Southeast Fisheries Science Center , Miami, FL , United States.

ABSTRACT
The threatened status (both ecologically and legally) of Caribbean staghorn coral, Acropora cervicornis, has prompted rapidly expanding efforts in culture and restocking, although tissue loss diseases continue to affect populations. In this study, disease surveillance and histopathological characterization were used to compare disease dynamics and conditions in both restored and extant wild populations. Disease had devastating effects on both wild and restored populations, but dynamics were highly variable and appeared to be site-specific with no significant differences in disease prevalence between wild versus restored sites. A subset of 20 haphazardly selected colonies at each site observed over a four-month period revealed widely varying disease incidence, although not between restored and wild sites, and a case fatality rate of 8%. A tropical storm was the only discernable environmental trigger associated with a consistent spike in incidence across all sites. Lastly, two field mitigation techniques, (1) excision of apparently healthy branch tips from a diseased colony, and (2) placement of a band of epoxy fully enclosing the diseased margin, gave equivocal results with no significant benefit detected for either treatment compared to controls. Tissue condition of associated samples was fair to very poor; unsuccessful mitigation treatment samples had severe degeneration of mesenterial filament cnidoglandular bands. Polyp mucocytes in all samples were infected with suspect rickettsia-like organisms; however, no bacterial aggregates were found. No histological differences were found between disease lesions with gross signs fitting literature descriptions of white-band disease (WBD) and rapid tissue loss (RTL). Overall, our results do not support differing disease quality, quantity, dynamics, nor health management strategies between restored and wild colonies of A. cervicornis in the Florida Keys.

No MeSH data available.


Related in: MedlinePlus

Illustration of the treatments used in mitigation trials.(A) Excision (EX) of healthy looking tips snipped from a nearby disease colony and re-attached to the reef, (B) Epoxy band (EB) surrounding the diseased tissue margin. One month later (C) this ‘successful’ EB replicate shows no additional tissue loss and initial regrowth over the epoxy. Control treatments are illustrated in Figs. 1C and 1D.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4157300&req=5

fig-2: Illustration of the treatments used in mitigation trials.(A) Excision (EX) of healthy looking tips snipped from a nearby disease colony and re-attached to the reef, (B) Epoxy band (EB) surrounding the diseased tissue margin. One month later (C) this ‘successful’ EB replicate shows no additional tissue loss and initial regrowth over the epoxy. Control treatments are illustrated in Figs. 1C and 1D.

Mentions: Two disease mitigation treatments were implemented to test effectiveness in arresting tissue loss (Fig. 2). The first treatment used a band of two-part marine epoxy (All-Fix Epoxy) applied around the branch to cover the disease margin of an affected colony, presumably functioning as a physical barrier over the tissue-loss margin. The second treatment involved a complete excision of live, apparently healthy, tips of branches distal to a disease margin using handheld wire cutters. The excised fragment was then reattached to the reef substrate with epoxy at a distance greater than 1 m from the parent colony. These treatments are referred to as excision (EX; Fig. 2A) and epoxy band (EB; Figs. 2B–2C), respectively. Lastly, a control treatment consisted of a cable tie placed at or near a tissue loss margin on the same colony as a reference point to detect continued tissue loss (Fig. 1C or Fig. 1D). To prevent potential contamination, nitrile gloves were used when manipulating colonies and were changed when moving between affected colonies. All equipment that came into contact with diseased colonies was rinsed in a 10% bleach solution following each dive.


Disease dynamics and potential mitigation among restored and wild staghorn coral, Acropora cervicornis.

Miller MW, Lohr KE, Cameron CM, Williams DE, Peters EC - PeerJ (2014)

Illustration of the treatments used in mitigation trials.(A) Excision (EX) of healthy looking tips snipped from a nearby disease colony and re-attached to the reef, (B) Epoxy band (EB) surrounding the diseased tissue margin. One month later (C) this ‘successful’ EB replicate shows no additional tissue loss and initial regrowth over the epoxy. Control treatments are illustrated in Figs. 1C and 1D.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4157300&req=5

fig-2: Illustration of the treatments used in mitigation trials.(A) Excision (EX) of healthy looking tips snipped from a nearby disease colony and re-attached to the reef, (B) Epoxy band (EB) surrounding the diseased tissue margin. One month later (C) this ‘successful’ EB replicate shows no additional tissue loss and initial regrowth over the epoxy. Control treatments are illustrated in Figs. 1C and 1D.
Mentions: Two disease mitigation treatments were implemented to test effectiveness in arresting tissue loss (Fig. 2). The first treatment used a band of two-part marine epoxy (All-Fix Epoxy) applied around the branch to cover the disease margin of an affected colony, presumably functioning as a physical barrier over the tissue-loss margin. The second treatment involved a complete excision of live, apparently healthy, tips of branches distal to a disease margin using handheld wire cutters. The excised fragment was then reattached to the reef substrate with epoxy at a distance greater than 1 m from the parent colony. These treatments are referred to as excision (EX; Fig. 2A) and epoxy band (EB; Figs. 2B–2C), respectively. Lastly, a control treatment consisted of a cable tie placed at or near a tissue loss margin on the same colony as a reference point to detect continued tissue loss (Fig. 1C or Fig. 1D). To prevent potential contamination, nitrile gloves were used when manipulating colonies and were changed when moving between affected colonies. All equipment that came into contact with diseased colonies was rinsed in a 10% bleach solution following each dive.

Bottom Line: Disease had devastating effects on both wild and restored populations, but dynamics were highly variable and appeared to be site-specific with no significant differences in disease prevalence between wild versus restored sites.No histological differences were found between disease lesions with gross signs fitting literature descriptions of white-band disease (WBD) and rapid tissue loss (RTL).Overall, our results do not support differing disease quality, quantity, dynamics, nor health management strategies between restored and wild colonies of A. cervicornis in the Florida Keys.

View Article: PubMed Central - HTML - PubMed

Affiliation: NOAA-National Marine Fisheries Service, Southeast Fisheries Science Center , Miami, FL , United States.

ABSTRACT
The threatened status (both ecologically and legally) of Caribbean staghorn coral, Acropora cervicornis, has prompted rapidly expanding efforts in culture and restocking, although tissue loss diseases continue to affect populations. In this study, disease surveillance and histopathological characterization were used to compare disease dynamics and conditions in both restored and extant wild populations. Disease had devastating effects on both wild and restored populations, but dynamics were highly variable and appeared to be site-specific with no significant differences in disease prevalence between wild versus restored sites. A subset of 20 haphazardly selected colonies at each site observed over a four-month period revealed widely varying disease incidence, although not between restored and wild sites, and a case fatality rate of 8%. A tropical storm was the only discernable environmental trigger associated with a consistent spike in incidence across all sites. Lastly, two field mitigation techniques, (1) excision of apparently healthy branch tips from a diseased colony, and (2) placement of a band of epoxy fully enclosing the diseased margin, gave equivocal results with no significant benefit detected for either treatment compared to controls. Tissue condition of associated samples was fair to very poor; unsuccessful mitigation treatment samples had severe degeneration of mesenterial filament cnidoglandular bands. Polyp mucocytes in all samples were infected with suspect rickettsia-like organisms; however, no bacterial aggregates were found. No histological differences were found between disease lesions with gross signs fitting literature descriptions of white-band disease (WBD) and rapid tissue loss (RTL). Overall, our results do not support differing disease quality, quantity, dynamics, nor health management strategies between restored and wild colonies of A. cervicornis in the Florida Keys.

No MeSH data available.


Related in: MedlinePlus