Limits...
Genome duplication improves rice root resistance to salt stress.

Tu Y, Jiang A, Gan L, Hossain M, Zhang J, Peng B, Xiong Y, Song Z, Cai D, Xu W, Zhang J, He Y - Rice (N Y) (2014)

Bottom Line: We found that tetraploid rice showed less root growth inhibition, accumulated higher proline content and lower MDA content, and exhibited a higher frequency of normal epidermal cells than diploid rice.Furthermore, Na(+) in tetraploid rice roots significantly decreased while root tip H(+) efflux in tetraploid rice significantly increased.Our results suggest that genome duplication improves root resistance to salt stress, and that enhanced proton transport to the root surface may play a role in reducing Na(+) entrance into the roots.

View Article: PubMed Central - HTML - PubMed

Affiliation: Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei University, Wuhan 430062, P.R. China.

ABSTRACT

Background: Salinity is a stressful environmental factor that limits the productivity of crop plants, and roots form the major interface between plants and various abiotic stresses. Rice is a salt-sensitive crop and its polyploid shows advantages in terms of stress resistance. The objective of this study was to investigate the effects of genome duplication on rice root resistance to salt stress.

Results: Both diploid rice (HN2026-2x and Nipponbare-2x) and their corresponding tetraploid rice (HN2026-4x and Nipponbare-4x) were cultured in half-strength Murashige and Skoog medium with 150 mM NaCl for 3 and 5 days. Accumulations of proline, soluble sugar, malondialdehyde (MDA), Na(+) content, H(+) (proton) flux at root tips, and the microstructure and ultrastructure in rice roots were examined. We found that tetraploid rice showed less root growth inhibition, accumulated higher proline content and lower MDA content, and exhibited a higher frequency of normal epidermal cells than diploid rice. In addition, a protective gap appeared between the cortex and pericycle cells in tetraploid rice. Next, ultrastructural analysis showed that genome duplication improved membrane, organelle, and nuclei stability. Furthermore, Na(+) in tetraploid rice roots significantly decreased while root tip H(+) efflux in tetraploid rice significantly increased.

Conclusions: Our results suggest that genome duplication improves root resistance to salt stress, and that enhanced proton transport to the root surface may play a role in reducing Na(+) entrance into the roots.

No MeSH data available.


The amount of soluble sugar in roots of diploid and tetraploid rice under salt stress. Data represent the mean ± SD (n = 30 × 3 independent biological replicates: all samples were tested in three independent experiments with each included thirty rice plants). Means followed by common letters are not significantly different at P = 0.05 using a protected least-significant difference.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4151024&req=5

Figure 3: The amount of soluble sugar in roots of diploid and tetraploid rice under salt stress. Data represent the mean ± SD (n = 30 × 3 independent biological replicates: all samples were tested in three independent experiments with each included thirty rice plants). Means followed by common letters are not significantly different at P = 0.05 using a protected least-significant difference.

Mentions: Genome duplication led to a similar increase in different rice cultivars in terms of soluble sugar accumulation under salt stress, and the difference was significant between tetraploid and diploid rice subjected to salt stress. However, no significant changes were found between the two different cultivars for tetraploid or diploid rice (Figure 3). The amount of soluble sugar in tetraploid rice roots was similar to that of the corresponding diploid cultivars under normal conditions, but showed a marked decrease in the tetraploid rice roots compared with diploid cultivars under salt stress.


Genome duplication improves rice root resistance to salt stress.

Tu Y, Jiang A, Gan L, Hossain M, Zhang J, Peng B, Xiong Y, Song Z, Cai D, Xu W, Zhang J, He Y - Rice (N Y) (2014)

The amount of soluble sugar in roots of diploid and tetraploid rice under salt stress. Data represent the mean ± SD (n = 30 × 3 independent biological replicates: all samples were tested in three independent experiments with each included thirty rice plants). Means followed by common letters are not significantly different at P = 0.05 using a protected least-significant difference.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4151024&req=5

Figure 3: The amount of soluble sugar in roots of diploid and tetraploid rice under salt stress. Data represent the mean ± SD (n = 30 × 3 independent biological replicates: all samples were tested in three independent experiments with each included thirty rice plants). Means followed by common letters are not significantly different at P = 0.05 using a protected least-significant difference.
Mentions: Genome duplication led to a similar increase in different rice cultivars in terms of soluble sugar accumulation under salt stress, and the difference was significant between tetraploid and diploid rice subjected to salt stress. However, no significant changes were found between the two different cultivars for tetraploid or diploid rice (Figure 3). The amount of soluble sugar in tetraploid rice roots was similar to that of the corresponding diploid cultivars under normal conditions, but showed a marked decrease in the tetraploid rice roots compared with diploid cultivars under salt stress.

Bottom Line: We found that tetraploid rice showed less root growth inhibition, accumulated higher proline content and lower MDA content, and exhibited a higher frequency of normal epidermal cells than diploid rice.Furthermore, Na(+) in tetraploid rice roots significantly decreased while root tip H(+) efflux in tetraploid rice significantly increased.Our results suggest that genome duplication improves root resistance to salt stress, and that enhanced proton transport to the root surface may play a role in reducing Na(+) entrance into the roots.

View Article: PubMed Central - HTML - PubMed

Affiliation: Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei University, Wuhan 430062, P.R. China.

ABSTRACT

Background: Salinity is a stressful environmental factor that limits the productivity of crop plants, and roots form the major interface between plants and various abiotic stresses. Rice is a salt-sensitive crop and its polyploid shows advantages in terms of stress resistance. The objective of this study was to investigate the effects of genome duplication on rice root resistance to salt stress.

Results: Both diploid rice (HN2026-2x and Nipponbare-2x) and their corresponding tetraploid rice (HN2026-4x and Nipponbare-4x) were cultured in half-strength Murashige and Skoog medium with 150 mM NaCl for 3 and 5 days. Accumulations of proline, soluble sugar, malondialdehyde (MDA), Na(+) content, H(+) (proton) flux at root tips, and the microstructure and ultrastructure in rice roots were examined. We found that tetraploid rice showed less root growth inhibition, accumulated higher proline content and lower MDA content, and exhibited a higher frequency of normal epidermal cells than diploid rice. In addition, a protective gap appeared between the cortex and pericycle cells in tetraploid rice. Next, ultrastructural analysis showed that genome duplication improved membrane, organelle, and nuclei stability. Furthermore, Na(+) in tetraploid rice roots significantly decreased while root tip H(+) efflux in tetraploid rice significantly increased.

Conclusions: Our results suggest that genome duplication improves root resistance to salt stress, and that enhanced proton transport to the root surface may play a role in reducing Na(+) entrance into the roots.

No MeSH data available.