Limits...
Proteomic analysis of the Plasmodium male gamete reveals the key role for glycolysis in flagellar motility.

Talman AM, Prieto JH, Marques S, Ubaida-Mohien C, Lawniczak M, Wass MN, Xu T, Frank R, Ecker A, Stanway RS, Krishna S, Sternberg MJ, Christophides GK, Graham DR, Dinglasan RR, Yates JR, Sinden RE - Malar. J. (2014)

Bottom Line: Amongst them were the 11 enzymes of the glycolytic pathway.The hexose transporter was localized to the gamete plasma membrane and it was shown that microgamete motility can be suppressed effectively by inhibitors of this transporter and of the glycolytic pathway.It identifies glycolysis as the likely exclusive source of energy for flagellar beat, and provides new insights in original features of Plasmodium flagellar organization.

View Article: PubMed Central - PubMed

Affiliation: Division of Cell and Molecular Biology, Imperial College, London, UK. arthur.talman@yale.edu.

ABSTRACT

Background: Gametogenesis and fertilization play crucial roles in malaria transmission. While male gametes are thought to be amongst the simplest eukaryotic cells and are proven targets of transmission blocking immunity, little is known about their molecular organization. For example, the pathway of energy metabolism that power motility, a feature that facilitates gamete encounter and fertilization, is unknown.

Methods: Plasmodium berghei microgametes were purified and analysed by whole-cell proteomic analysis for the first time. Data are available via ProteomeXchange with identifier PXD001163.

Results: 615 proteins were recovered, they included all male gamete proteins described thus far. Amongst them were the 11 enzymes of the glycolytic pathway. The hexose transporter was localized to the gamete plasma membrane and it was shown that microgamete motility can be suppressed effectively by inhibitors of this transporter and of the glycolytic pathway.

Conclusions: This study describes the first whole-cell proteomic analysis of the malaria male gamete. It identifies glycolysis as the likely exclusive source of energy for flagellar beat, and provides new insights in original features of Plasmodium flagellar organization.

Show MeSH

Related in: MedlinePlus

Male motility is suppressed by glycolytic inhibitors. The proportion of male gametes exhibiting each class of flagellar beat was determined in the presence of the glucose analogues 2-deoxy-D-glucose (not processed after phosphorylation by hexokinase) (A) and CM3361 (competitive inhibitor of glucose transport) (B) in the presence  or absence  of excess glucose (10 mM). (C, D) Patterns of motility were further categorized into fast beat, slow beat and immotile. (E) Values of flagella wave frequencies were measured with different concentrations of CM3361. Frequencies of waves were not altered by the presence of the inhibitor.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4150949&req=5

Fig2: Male motility is suppressed by glycolytic inhibitors. The proportion of male gametes exhibiting each class of flagellar beat was determined in the presence of the glucose analogues 2-deoxy-D-glucose (not processed after phosphorylation by hexokinase) (A) and CM3361 (competitive inhibitor of glucose transport) (B) in the presence or absence of excess glucose (10 mM). (C, D) Patterns of motility were further categorized into fast beat, slow beat and immotile. (E) Values of flagella wave frequencies were measured with different concentrations of CM3361. Frequencies of waves were not altered by the presence of the inhibitor.

Mentions: To test directly the role of glycolytic fermentation in male gamete motility, two different competitive glycolytic inhibitors were tested: CM3361, a specific inhibitor of PbHT [64], and 2-deoxy-D-glucose (2DG), which is phosphorylated by hexokinase but cannot then undergo glycolysis. Both competitive inhibitors were previously shown to inhibit in vitro asexual growth of Plasmodium falciparum[64, 65]. As hypothesized, both compounds inhibited male gamete motility in a dose-dependent manner (Figure 2A and B). In spite of the high concentration that was required to achieve inhibition, it was partially rescued by adding excess glucose (+10 mM) (Figure 2A and B), indicating that the inhibition is in all probability specific to glucose metabolism.Figure 2


Proteomic analysis of the Plasmodium male gamete reveals the key role for glycolysis in flagellar motility.

Talman AM, Prieto JH, Marques S, Ubaida-Mohien C, Lawniczak M, Wass MN, Xu T, Frank R, Ecker A, Stanway RS, Krishna S, Sternberg MJ, Christophides GK, Graham DR, Dinglasan RR, Yates JR, Sinden RE - Malar. J. (2014)

Male motility is suppressed by glycolytic inhibitors. The proportion of male gametes exhibiting each class of flagellar beat was determined in the presence of the glucose analogues 2-deoxy-D-glucose (not processed after phosphorylation by hexokinase) (A) and CM3361 (competitive inhibitor of glucose transport) (B) in the presence  or absence  of excess glucose (10 mM). (C, D) Patterns of motility were further categorized into fast beat, slow beat and immotile. (E) Values of flagella wave frequencies were measured with different concentrations of CM3361. Frequencies of waves were not altered by the presence of the inhibitor.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4150949&req=5

Fig2: Male motility is suppressed by glycolytic inhibitors. The proportion of male gametes exhibiting each class of flagellar beat was determined in the presence of the glucose analogues 2-deoxy-D-glucose (not processed after phosphorylation by hexokinase) (A) and CM3361 (competitive inhibitor of glucose transport) (B) in the presence or absence of excess glucose (10 mM). (C, D) Patterns of motility were further categorized into fast beat, slow beat and immotile. (E) Values of flagella wave frequencies were measured with different concentrations of CM3361. Frequencies of waves were not altered by the presence of the inhibitor.
Mentions: To test directly the role of glycolytic fermentation in male gamete motility, two different competitive glycolytic inhibitors were tested: CM3361, a specific inhibitor of PbHT [64], and 2-deoxy-D-glucose (2DG), which is phosphorylated by hexokinase but cannot then undergo glycolysis. Both competitive inhibitors were previously shown to inhibit in vitro asexual growth of Plasmodium falciparum[64, 65]. As hypothesized, both compounds inhibited male gamete motility in a dose-dependent manner (Figure 2A and B). In spite of the high concentration that was required to achieve inhibition, it was partially rescued by adding excess glucose (+10 mM) (Figure 2A and B), indicating that the inhibition is in all probability specific to glucose metabolism.Figure 2

Bottom Line: Amongst them were the 11 enzymes of the glycolytic pathway.The hexose transporter was localized to the gamete plasma membrane and it was shown that microgamete motility can be suppressed effectively by inhibitors of this transporter and of the glycolytic pathway.It identifies glycolysis as the likely exclusive source of energy for flagellar beat, and provides new insights in original features of Plasmodium flagellar organization.

View Article: PubMed Central - PubMed

Affiliation: Division of Cell and Molecular Biology, Imperial College, London, UK. arthur.talman@yale.edu.

ABSTRACT

Background: Gametogenesis and fertilization play crucial roles in malaria transmission. While male gametes are thought to be amongst the simplest eukaryotic cells and are proven targets of transmission blocking immunity, little is known about their molecular organization. For example, the pathway of energy metabolism that power motility, a feature that facilitates gamete encounter and fertilization, is unknown.

Methods: Plasmodium berghei microgametes were purified and analysed by whole-cell proteomic analysis for the first time. Data are available via ProteomeXchange with identifier PXD001163.

Results: 615 proteins were recovered, they included all male gamete proteins described thus far. Amongst them were the 11 enzymes of the glycolytic pathway. The hexose transporter was localized to the gamete plasma membrane and it was shown that microgamete motility can be suppressed effectively by inhibitors of this transporter and of the glycolytic pathway.

Conclusions: This study describes the first whole-cell proteomic analysis of the malaria male gamete. It identifies glycolysis as the likely exclusive source of energy for flagellar beat, and provides new insights in original features of Plasmodium flagellar organization.

Show MeSH
Related in: MedlinePlus