Limits...
Significantly enhanced dye removal performance of hollow tin oxide nanoparticles via carbon coating in dark environment and study of its mechanism.

Yang S, Wu Z, Huang L, Zhou B, Lei M, Sun L, Tian Q, Pan J, Wu W, Zhang H - Nanoscale Res Lett (2014)

Bottom Line: The resulting products were characterized in terms of morphology, composition, and surface property by various analytical techniques.Moreover, the SnO2@C hollow nanoparticles are shown to be effective adsorbents for removing four different dyes from aqueous solutions, which is superior to the pure hollow SnO2 nanoparticles and commercial SnO2.The enhanced mechanism has also been discussed, which can be attributed to the high specific surface areas after carbon coating.

View Article: PubMed Central - HTML - PubMed

Affiliation: State Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083, People's Republic of China ; Laboratory of Printable Functional Nanomaterials and Printed Electronics, School of Printing and Packaging, Wuhan University, Wuhan 430072, People's Republic of China.

ABSTRACT
Understanding the correlation between physicochemical properties and morphology of nanostructures is a prerequisite for widespread applications of nanomaterials in environmental application areas. Herein, we illustrated that the uniform-sized SnO2@C hollow nanoparticles were large-scale synthesized by a facile hydrothermal method. The size of the core-shell hollow nanoparticles was about 56 nm, and the shell was composed of a solid carbon layer with a thickness of 2 ~ 3 nm. The resulting products were characterized in terms of morphology, composition, and surface property by various analytical techniques. Moreover, the SnO2@C hollow nanoparticles are shown to be effective adsorbents for removing four different dyes from aqueous solutions, which is superior to the pure hollow SnO2 nanoparticles and commercial SnO2. The enhanced mechanism has also been discussed, which can be attributed to the high specific surface areas after carbon coating.

No MeSH data available.


Reutilization properties. Removal performance under five cycles (a) and isotherms (b) for RhB adsorption on the as-obtained hollow SnO2@C nanoparticles.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4150862&req=5

Figure 6: Reutilization properties. Removal performance under five cycles (a) and isotherms (b) for RhB adsorption on the as-obtained hollow SnO2@C nanoparticles.

Mentions: Subsequently, the stability of the as-prepared hollow SnO2@C nanoparticles has been further investigated by recycling the removal for RhB, and the results are shown in Figure 6a. The hollow SnO2@C nanoparticles exhibited a good removal dye activity and stability; the degradation rate of RhB solution was found to be more than 78% after 5 cycles. As shown in Figure 6b and Additional file 1: Figure S4, the adsorption capacity for RhB increased with the different RhB concentrations. The maximum adsorption capacity in the concentration range studied is 28.2 mg/g for RhB. The amount of the dye adsorbed was calculated using the equation: Qe = (C0 − Ce) V/m, where Qe (mg/g) is the amount of RhB adsorbed onto the adsorbent at equilibrium, C0 (mg/L) and Ce (mg/L) are the initial and equilibrated RhB concentrations, respectively, V (L) is the volume of solution added, and m (g) is the mass of the adsorbent. Figure 6b shows the isotherms for RhB adsorption on the as-obtained SnO2@C nanoparticles. It can be found that the regression coefficient R2 obtained from the Langmuir model is much higher than that of from the Freundlich model (0.9925 > 0.9438), suggesting the Langmuir model fits better with the experimental data [21].


Significantly enhanced dye removal performance of hollow tin oxide nanoparticles via carbon coating in dark environment and study of its mechanism.

Yang S, Wu Z, Huang L, Zhou B, Lei M, Sun L, Tian Q, Pan J, Wu W, Zhang H - Nanoscale Res Lett (2014)

Reutilization properties. Removal performance under five cycles (a) and isotherms (b) for RhB adsorption on the as-obtained hollow SnO2@C nanoparticles.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4150862&req=5

Figure 6: Reutilization properties. Removal performance under five cycles (a) and isotherms (b) for RhB adsorption on the as-obtained hollow SnO2@C nanoparticles.
Mentions: Subsequently, the stability of the as-prepared hollow SnO2@C nanoparticles has been further investigated by recycling the removal for RhB, and the results are shown in Figure 6a. The hollow SnO2@C nanoparticles exhibited a good removal dye activity and stability; the degradation rate of RhB solution was found to be more than 78% after 5 cycles. As shown in Figure 6b and Additional file 1: Figure S4, the adsorption capacity for RhB increased with the different RhB concentrations. The maximum adsorption capacity in the concentration range studied is 28.2 mg/g for RhB. The amount of the dye adsorbed was calculated using the equation: Qe = (C0 − Ce) V/m, where Qe (mg/g) is the amount of RhB adsorbed onto the adsorbent at equilibrium, C0 (mg/L) and Ce (mg/L) are the initial and equilibrated RhB concentrations, respectively, V (L) is the volume of solution added, and m (g) is the mass of the adsorbent. Figure 6b shows the isotherms for RhB adsorption on the as-obtained SnO2@C nanoparticles. It can be found that the regression coefficient R2 obtained from the Langmuir model is much higher than that of from the Freundlich model (0.9925 > 0.9438), suggesting the Langmuir model fits better with the experimental data [21].

Bottom Line: The resulting products were characterized in terms of morphology, composition, and surface property by various analytical techniques.Moreover, the SnO2@C hollow nanoparticles are shown to be effective adsorbents for removing four different dyes from aqueous solutions, which is superior to the pure hollow SnO2 nanoparticles and commercial SnO2.The enhanced mechanism has also been discussed, which can be attributed to the high specific surface areas after carbon coating.

View Article: PubMed Central - HTML - PubMed

Affiliation: State Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083, People's Republic of China ; Laboratory of Printable Functional Nanomaterials and Printed Electronics, School of Printing and Packaging, Wuhan University, Wuhan 430072, People's Republic of China.

ABSTRACT
Understanding the correlation between physicochemical properties and morphology of nanostructures is a prerequisite for widespread applications of nanomaterials in environmental application areas. Herein, we illustrated that the uniform-sized SnO2@C hollow nanoparticles were large-scale synthesized by a facile hydrothermal method. The size of the core-shell hollow nanoparticles was about 56 nm, and the shell was composed of a solid carbon layer with a thickness of 2 ~ 3 nm. The resulting products were characterized in terms of morphology, composition, and surface property by various analytical techniques. Moreover, the SnO2@C hollow nanoparticles are shown to be effective adsorbents for removing four different dyes from aqueous solutions, which is superior to the pure hollow SnO2 nanoparticles and commercial SnO2. The enhanced mechanism has also been discussed, which can be attributed to the high specific surface areas after carbon coating.

No MeSH data available.