Limits...
Significantly enhanced dye removal performance of hollow tin oxide nanoparticles via carbon coating in dark environment and study of its mechanism.

Yang S, Wu Z, Huang L, Zhou B, Lei M, Sun L, Tian Q, Pan J, Wu W, Zhang H - Nanoscale Res Lett (2014)

Bottom Line: The resulting products were characterized in terms of morphology, composition, and surface property by various analytical techniques.Moreover, the SnO2@C hollow nanoparticles are shown to be effective adsorbents for removing four different dyes from aqueous solutions, which is superior to the pure hollow SnO2 nanoparticles and commercial SnO2.The enhanced mechanism has also been discussed, which can be attributed to the high specific surface areas after carbon coating.

View Article: PubMed Central - HTML - PubMed

Affiliation: State Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083, People's Republic of China ; Laboratory of Printable Functional Nanomaterials and Printed Electronics, School of Printing and Packaging, Wuhan University, Wuhan 430072, People's Republic of China.

ABSTRACT
Understanding the correlation between physicochemical properties and morphology of nanostructures is a prerequisite for widespread applications of nanomaterials in environmental application areas. Herein, we illustrated that the uniform-sized SnO2@C hollow nanoparticles were large-scale synthesized by a facile hydrothermal method. The size of the core-shell hollow nanoparticles was about 56 nm, and the shell was composed of a solid carbon layer with a thickness of 2 ~ 3 nm. The resulting products were characterized in terms of morphology, composition, and surface property by various analytical techniques. Moreover, the SnO2@C hollow nanoparticles are shown to be effective adsorbents for removing four different dyes from aqueous solutions, which is superior to the pure hollow SnO2 nanoparticles and commercial SnO2. The enhanced mechanism has also been discussed, which can be attributed to the high specific surface areas after carbon coating.

No MeSH data available.


TEM images at low and high magnifications. (a) TEM image at low magnification (the inset is the histogram of the particle diameters). (b) SAED patterns and (c) TEM image at high magnification (the inset scale bar is 10 nm) of the as-prepared carbon-coated hollow SnO2 nanoparticles and (d) HRTEM image (d) of a single SnO2@C nanoparticle (the inset scale bar is 2 nm).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4150862&req=5

Figure 3: TEM images at low and high magnifications. (a) TEM image at low magnification (the inset is the histogram of the particle diameters). (b) SAED patterns and (c) TEM image at high magnification (the inset scale bar is 10 nm) of the as-prepared carbon-coated hollow SnO2 nanoparticles and (d) HRTEM image (d) of a single SnO2@C nanoparticle (the inset scale bar is 2 nm).

Mentions: Subsequently, the morphologies of the carbon-coated hollow SnO2 nanoparticles (SnO2@C) were further studied by TEM and HRTEM. Figure 3a shows the TEM image of the SnO2@C nanoparticles. It can be seen that the SnO2@C nanoparticles still maintained a uniform morphology. The inset histogram diameters illustrate that the average diameter of SnO2@C nanoparticles is 55.7 nm. Compared with the naked hollow SnO2 nanoparticles, the thickness of the carbon coating layer is about 2 ~ 3 nm. As shown in Figure 3b, the bright rings in the SAED pattern can be well indexed to the structure of the rutile-phase SnO2, which demonstrate that the structure of SnO2 is also not change by carbon coating. From the magnified TEM images (Figure 3c), a thin carbon layer on the surface of the SnO2 nanoparticles can be observed clearly, and the thermal gravimetric analysis (Additional file 1: Figure S1) illustrates that about 37% of carbon has coated the SnO2 nanoparticles. The HRTEM image (Figure 3d) shows that the carbon layer is smooth, continuous, and has a thickness of about 2 ~ 3 nm. There are lattice fringes with lattice spacing of about 0.334 nm, which can be indexed to the (110) plane of tetragonal rutile-phase SnO2 nanoparticles. The above results prove that the carbon has been successfully coated on the surface of the hollow SnO2 nanoparticles, and the morphology is still maintained after the coating treatment.


Significantly enhanced dye removal performance of hollow tin oxide nanoparticles via carbon coating in dark environment and study of its mechanism.

Yang S, Wu Z, Huang L, Zhou B, Lei M, Sun L, Tian Q, Pan J, Wu W, Zhang H - Nanoscale Res Lett (2014)

TEM images at low and high magnifications. (a) TEM image at low magnification (the inset is the histogram of the particle diameters). (b) SAED patterns and (c) TEM image at high magnification (the inset scale bar is 10 nm) of the as-prepared carbon-coated hollow SnO2 nanoparticles and (d) HRTEM image (d) of a single SnO2@C nanoparticle (the inset scale bar is 2 nm).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4150862&req=5

Figure 3: TEM images at low and high magnifications. (a) TEM image at low magnification (the inset is the histogram of the particle diameters). (b) SAED patterns and (c) TEM image at high magnification (the inset scale bar is 10 nm) of the as-prepared carbon-coated hollow SnO2 nanoparticles and (d) HRTEM image (d) of a single SnO2@C nanoparticle (the inset scale bar is 2 nm).
Mentions: Subsequently, the morphologies of the carbon-coated hollow SnO2 nanoparticles (SnO2@C) were further studied by TEM and HRTEM. Figure 3a shows the TEM image of the SnO2@C nanoparticles. It can be seen that the SnO2@C nanoparticles still maintained a uniform morphology. The inset histogram diameters illustrate that the average diameter of SnO2@C nanoparticles is 55.7 nm. Compared with the naked hollow SnO2 nanoparticles, the thickness of the carbon coating layer is about 2 ~ 3 nm. As shown in Figure 3b, the bright rings in the SAED pattern can be well indexed to the structure of the rutile-phase SnO2, which demonstrate that the structure of SnO2 is also not change by carbon coating. From the magnified TEM images (Figure 3c), a thin carbon layer on the surface of the SnO2 nanoparticles can be observed clearly, and the thermal gravimetric analysis (Additional file 1: Figure S1) illustrates that about 37% of carbon has coated the SnO2 nanoparticles. The HRTEM image (Figure 3d) shows that the carbon layer is smooth, continuous, and has a thickness of about 2 ~ 3 nm. There are lattice fringes with lattice spacing of about 0.334 nm, which can be indexed to the (110) plane of tetragonal rutile-phase SnO2 nanoparticles. The above results prove that the carbon has been successfully coated on the surface of the hollow SnO2 nanoparticles, and the morphology is still maintained after the coating treatment.

Bottom Line: The resulting products were characterized in terms of morphology, composition, and surface property by various analytical techniques.Moreover, the SnO2@C hollow nanoparticles are shown to be effective adsorbents for removing four different dyes from aqueous solutions, which is superior to the pure hollow SnO2 nanoparticles and commercial SnO2.The enhanced mechanism has also been discussed, which can be attributed to the high specific surface areas after carbon coating.

View Article: PubMed Central - HTML - PubMed

Affiliation: State Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083, People's Republic of China ; Laboratory of Printable Functional Nanomaterials and Printed Electronics, School of Printing and Packaging, Wuhan University, Wuhan 430072, People's Republic of China.

ABSTRACT
Understanding the correlation between physicochemical properties and morphology of nanostructures is a prerequisite for widespread applications of nanomaterials in environmental application areas. Herein, we illustrated that the uniform-sized SnO2@C hollow nanoparticles were large-scale synthesized by a facile hydrothermal method. The size of the core-shell hollow nanoparticles was about 56 nm, and the shell was composed of a solid carbon layer with a thickness of 2 ~ 3 nm. The resulting products were characterized in terms of morphology, composition, and surface property by various analytical techniques. Moreover, the SnO2@C hollow nanoparticles are shown to be effective adsorbents for removing four different dyes from aqueous solutions, which is superior to the pure hollow SnO2 nanoparticles and commercial SnO2. The enhanced mechanism has also been discussed, which can be attributed to the high specific surface areas after carbon coating.

No MeSH data available.