Limits...
Enhanced electrical properties in sub-10-nm WO3 nanoflakes prepared via a two-step sol-gel-exfoliation method.

Zhuiykov S, Kats E - Nanoscale Res Lett (2014)

Bottom Line: The morphology and electrical properties of orthorhombic β-WO3 nanoflakes with thickness of ~7 to 9 nm were investigated at the nanoscale with a combination of scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), current sensing force spectroscopy atomic force microscopy (CSFS-AFM, or PeakForce TUNA™), Fourier transform infra-red absorption spectroscopy (FTIR), linear sweep voltammetry (LSV) and Raman spectroscopy techniques.CSFS-AFM analysis established good correlation between the topography of the developed nanostructures and various features of WO3 nanoflakes synthesized via a two-step sol-gel-exfoliation method.It was determined that β-WO3 nanoflakes annealed at 550°C possess distinguished and exceptional thickness-dependent properties in comparison with the bulk, micro and nanostructured WO3 synthesized at alternative temperatures.

View Article: PubMed Central - HTML - PubMed

Affiliation: Materials Science and Engineering Division, CSIRO, 37 Graham Road, Highett, VIC 3190, Australia.

ABSTRACT
The morphology and electrical properties of orthorhombic β-WO3 nanoflakes with thickness of ~7 to 9 nm were investigated at the nanoscale with a combination of scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), current sensing force spectroscopy atomic force microscopy (CSFS-AFM, or PeakForce TUNA™), Fourier transform infra-red absorption spectroscopy (FTIR), linear sweep voltammetry (LSV) and Raman spectroscopy techniques. CSFS-AFM analysis established good correlation between the topography of the developed nanostructures and various features of WO3 nanoflakes synthesized via a two-step sol-gel-exfoliation method. It was determined that β-WO3 nanoflakes annealed at 550°C possess distinguished and exceptional thickness-dependent properties in comparison with the bulk, micro and nanostructured WO3 synthesized at alternative temperatures.

No MeSH data available.


Related in: MedlinePlus

Nyquist plots of Q2D WO3 nanoflakes annealed at 550°C and 650°C, respectively.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4150682&req=5

Figure 5: Nyquist plots of Q2D WO3 nanoflakes annealed at 550°C and 650°C, respectively.

Mentions: All impedance measurements were performed on Q2D WO3 nanoflakes sintered at 550 and 650°C, respectively. AC impedance measurements were done from 106 to 0.1 Hz with an alternative current of 10 mV and results are presented in Figure 5. We found that there are no significant difference between the impedance recorded for Q2D WO3 annealed at 550°C (1.6 ohm) and impedance recorded for Q2D WO3 annealed at 650°C (1.8 ohm). Due to very small dimensions, the contribution from the Q2D WO3 working electrode into the total impedance confirmed to be very small. The resistance primarily comes from wiring (e.g. cables, alligator clips) and electrolyte, where the resistance of Q2D WO3 nanoflakes is negligible.


Enhanced electrical properties in sub-10-nm WO3 nanoflakes prepared via a two-step sol-gel-exfoliation method.

Zhuiykov S, Kats E - Nanoscale Res Lett (2014)

Nyquist plots of Q2D WO3 nanoflakes annealed at 550°C and 650°C, respectively.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4150682&req=5

Figure 5: Nyquist plots of Q2D WO3 nanoflakes annealed at 550°C and 650°C, respectively.
Mentions: All impedance measurements were performed on Q2D WO3 nanoflakes sintered at 550 and 650°C, respectively. AC impedance measurements were done from 106 to 0.1 Hz with an alternative current of 10 mV and results are presented in Figure 5. We found that there are no significant difference between the impedance recorded for Q2D WO3 annealed at 550°C (1.6 ohm) and impedance recorded for Q2D WO3 annealed at 650°C (1.8 ohm). Due to very small dimensions, the contribution from the Q2D WO3 working electrode into the total impedance confirmed to be very small. The resistance primarily comes from wiring (e.g. cables, alligator clips) and electrolyte, where the resistance of Q2D WO3 nanoflakes is negligible.

Bottom Line: The morphology and electrical properties of orthorhombic β-WO3 nanoflakes with thickness of ~7 to 9 nm were investigated at the nanoscale with a combination of scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), current sensing force spectroscopy atomic force microscopy (CSFS-AFM, or PeakForce TUNA™), Fourier transform infra-red absorption spectroscopy (FTIR), linear sweep voltammetry (LSV) and Raman spectroscopy techniques.CSFS-AFM analysis established good correlation between the topography of the developed nanostructures and various features of WO3 nanoflakes synthesized via a two-step sol-gel-exfoliation method.It was determined that β-WO3 nanoflakes annealed at 550°C possess distinguished and exceptional thickness-dependent properties in comparison with the bulk, micro and nanostructured WO3 synthesized at alternative temperatures.

View Article: PubMed Central - HTML - PubMed

Affiliation: Materials Science and Engineering Division, CSIRO, 37 Graham Road, Highett, VIC 3190, Australia.

ABSTRACT
The morphology and electrical properties of orthorhombic β-WO3 nanoflakes with thickness of ~7 to 9 nm were investigated at the nanoscale with a combination of scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), current sensing force spectroscopy atomic force microscopy (CSFS-AFM, or PeakForce TUNA™), Fourier transform infra-red absorption spectroscopy (FTIR), linear sweep voltammetry (LSV) and Raman spectroscopy techniques. CSFS-AFM analysis established good correlation between the topography of the developed nanostructures and various features of WO3 nanoflakes synthesized via a two-step sol-gel-exfoliation method. It was determined that β-WO3 nanoflakes annealed at 550°C possess distinguished and exceptional thickness-dependent properties in comparison with the bulk, micro and nanostructured WO3 synthesized at alternative temperatures.

No MeSH data available.


Related in: MedlinePlus