Limits...
Ultrasound-mediated local drug and gene delivery using nanocarriers.

Zhou QL, Chen ZY, Wang YX, Yang F, Lin Y, Liao YY - Biomed Res Int (2014)

Bottom Line: These effects may induce transient membrane permeabilization (sonoporation) on a single cell level, cell death, and disruption of tissue structure, ensuring noninvasive, targeted, and efficient drug/gene delivery and therapy.The system has been used in various tissues and organs (in vitro or in vivo), including tumor tissues, kidney, cardiac, skeletal muscle, and vascular smooth muscle.In this review, we explore the research progress and application of ultrasound-mediated local drug/gene delivery with nanocarriers.

View Article: PubMed Central - PubMed

Affiliation: Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China.

ABSTRACT
With the development of nanotechnology, nanocarriers have been increasingly used for curative drug/gene delivery. Various nanocarriers are being introduced and assessed, such as polymer nanoparticles, liposomes, and micelles. As a novel theranostic system, nanocarriers hold great promise for ultrasound molecular imaging, targeted drug/gene delivery, and therapy. Nanocarriers, with the properties of smaller particle size, and long circulation time, would be advantageous in diagnostic and therapeutic applications. Nanocarriers can pass through blood capillary walls and cell membrane walls to deliver drugs. The mechanisms of interaction between ultrasound and nanocarriers are not clearly understood, which may be related to cavitation, mechanical effects, thermal effects, and so forth. These effects may induce transient membrane permeabilization (sonoporation) on a single cell level, cell death, and disruption of tissue structure, ensuring noninvasive, targeted, and efficient drug/gene delivery and therapy. The system has been used in various tissues and organs (in vitro or in vivo), including tumor tissues, kidney, cardiac, skeletal muscle, and vascular smooth muscle. In this review, we explore the research progress and application of ultrasound-mediated local drug/gene delivery with nanocarriers.

Show MeSH

Related in: MedlinePlus

Schematic overview of various nano/microbubbles used for ultrasound-mediated drug/gene delivery. (a) The drug-loaded nano/microbubbles releasing drugs upon insonation. (b) Nanodroplets extravasate because of EPR and come into being microbubbles after a phase transition. (c) Nanosized lipospheres which can be activated by ultrasound in tumor tissues. (d) Bubbles associated with targeting moiety can adhere to the target molecules in tissue which express epitopes [17].
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4150504&req=5

fig1: Schematic overview of various nano/microbubbles used for ultrasound-mediated drug/gene delivery. (a) The drug-loaded nano/microbubbles releasing drugs upon insonation. (b) Nanodroplets extravasate because of EPR and come into being microbubbles after a phase transition. (c) Nanosized lipospheres which can be activated by ultrasound in tumor tissues. (d) Bubbles associated with targeting moiety can adhere to the target molecules in tissue which express epitopes [17].

Mentions: Some ultrasound contrast agent for ultrasound imaging is nowadays used as promising drug carrier, such as nanobubble. Since ultrasound is only applied at a certain location, time- and space-controlled drug delivery may become feasible. A straightforward strategy to load the bubbles with drugs is associating them with the superficial shell or even with its building blocks. Another way of loading is by encapsulating the drug into an oil reservoir presented in the core of the bubble. In addition, drugs can also be packed into nanoparticles that are subsequently attached to the microbubble's surface. As represented in following figure, four types of bubbles have been conceived for ultrasound-mediated drug delivery: (a) drug-loaded bubbles; (b) in situ formed nanodroplets; (c) acoustically active nanobubbles; (d) targeted bubbles (Figure 1) [17].


Ultrasound-mediated local drug and gene delivery using nanocarriers.

Zhou QL, Chen ZY, Wang YX, Yang F, Lin Y, Liao YY - Biomed Res Int (2014)

Schematic overview of various nano/microbubbles used for ultrasound-mediated drug/gene delivery. (a) The drug-loaded nano/microbubbles releasing drugs upon insonation. (b) Nanodroplets extravasate because of EPR and come into being microbubbles after a phase transition. (c) Nanosized lipospheres which can be activated by ultrasound in tumor tissues. (d) Bubbles associated with targeting moiety can adhere to the target molecules in tissue which express epitopes [17].
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4150504&req=5

fig1: Schematic overview of various nano/microbubbles used for ultrasound-mediated drug/gene delivery. (a) The drug-loaded nano/microbubbles releasing drugs upon insonation. (b) Nanodroplets extravasate because of EPR and come into being microbubbles after a phase transition. (c) Nanosized lipospheres which can be activated by ultrasound in tumor tissues. (d) Bubbles associated with targeting moiety can adhere to the target molecules in tissue which express epitopes [17].
Mentions: Some ultrasound contrast agent for ultrasound imaging is nowadays used as promising drug carrier, such as nanobubble. Since ultrasound is only applied at a certain location, time- and space-controlled drug delivery may become feasible. A straightforward strategy to load the bubbles with drugs is associating them with the superficial shell or even with its building blocks. Another way of loading is by encapsulating the drug into an oil reservoir presented in the core of the bubble. In addition, drugs can also be packed into nanoparticles that are subsequently attached to the microbubble's surface. As represented in following figure, four types of bubbles have been conceived for ultrasound-mediated drug delivery: (a) drug-loaded bubbles; (b) in situ formed nanodroplets; (c) acoustically active nanobubbles; (d) targeted bubbles (Figure 1) [17].

Bottom Line: These effects may induce transient membrane permeabilization (sonoporation) on a single cell level, cell death, and disruption of tissue structure, ensuring noninvasive, targeted, and efficient drug/gene delivery and therapy.The system has been used in various tissues and organs (in vitro or in vivo), including tumor tissues, kidney, cardiac, skeletal muscle, and vascular smooth muscle.In this review, we explore the research progress and application of ultrasound-mediated local drug/gene delivery with nanocarriers.

View Article: PubMed Central - PubMed

Affiliation: Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China.

ABSTRACT
With the development of nanotechnology, nanocarriers have been increasingly used for curative drug/gene delivery. Various nanocarriers are being introduced and assessed, such as polymer nanoparticles, liposomes, and micelles. As a novel theranostic system, nanocarriers hold great promise for ultrasound molecular imaging, targeted drug/gene delivery, and therapy. Nanocarriers, with the properties of smaller particle size, and long circulation time, would be advantageous in diagnostic and therapeutic applications. Nanocarriers can pass through blood capillary walls and cell membrane walls to deliver drugs. The mechanisms of interaction between ultrasound and nanocarriers are not clearly understood, which may be related to cavitation, mechanical effects, thermal effects, and so forth. These effects may induce transient membrane permeabilization (sonoporation) on a single cell level, cell death, and disruption of tissue structure, ensuring noninvasive, targeted, and efficient drug/gene delivery and therapy. The system has been used in various tissues and organs (in vitro or in vivo), including tumor tissues, kidney, cardiac, skeletal muscle, and vascular smooth muscle. In this review, we explore the research progress and application of ultrasound-mediated local drug/gene delivery with nanocarriers.

Show MeSH
Related in: MedlinePlus