Limits...
Modelling climate change impacts on the seasonality of water resources in the Upper Ca River Watershed in Southeast Asia.

Giang PQ, Toshiki K, Sakata M, Kunikane S, Vinh TQ - ScientificWorldJournal (2014)

Bottom Line: The results indicated that temperature and evapotranspiration will increase in all months of future years.The greatest monthly increase of up to 29% and the greatest monthly decrease of up to 30% are expected in the 2090 s.As a result, decreases in dry season discharge and increases in wet season discharge are expected, with a span of ± 25% for the highest monthly changes in the 2090 s.

View Article: PubMed Central - PubMed

Affiliation: Department of Environmental and Life Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka-shi, Shizuoka 422-8526, Japan ; Faculty of Land Management, Vietnam National University of Agriculture, Hanoi 131000, Vietnam.

ABSTRACT
The impact of climate change on the seasonality of water resources in the Upper Ca River Watershed in mainland Southeast Asia was assessed using downscaled global climate models coupled with the SWAT model. The results indicated that temperature and evapotranspiration will increase in all months of future years. The area could warm as much as 3.4(°)C in the 2090 s, with an increase of annual evapotranspiration of up to 23% in the same period. We found an increase in the seasonality of precipitation (both an increase in the wet season and a decrease in the dry season). The greatest monthly increase of up to 29% and the greatest monthly decrease of up to 30% are expected in the 2090 s. As a result, decreases in dry season discharge and increases in wet season discharge are expected, with a span of ± 25% for the highest monthly changes in the 2090 s. This is expected to exacerbate the problem of seasonally uneven distribution of water resources: a large volume of water in the wet season and a scarcity of water in the dry season, a pattern that indicates the possibility of more frequent floods in the wet season and droughts in the dry season.

Show MeSH

Related in: MedlinePlus

Monthly change in river discharge at Yen Thuong Station (line chart) relative to the average data of the baseline period (column chart).
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4150503&req=5

fig9: Monthly change in river discharge at Yen Thuong Station (line chart) relative to the average data of the baseline period (column chart).

Mentions: A change of river discharge is projected for Yen Thuong hydrological station, which drains an area of approximately 22,800 km2. Figure 9 illustrates the relative monthly change projected by the three climate change scenarios B1, B2, and A2 and displayed for the three future time periods of the 2030s, 2060s, and 2090s. There is a clear trend in changes throughout the year. Discharge is projected to decrease for the first six months of the year, from January to June, and increase for the other six months, from July to December. The magnitude of changes varies depending on the month and scenario. Note, however, that November and December belong to the dry season, whereas May and June belong to the wet season. Therefore, in the dry season, there are four months with decreases and two months with increases in discharge. On the other hand, discharge increases for four of the six months of the wet season and decreases for the other two months.


Modelling climate change impacts on the seasonality of water resources in the Upper Ca River Watershed in Southeast Asia.

Giang PQ, Toshiki K, Sakata M, Kunikane S, Vinh TQ - ScientificWorldJournal (2014)

Monthly change in river discharge at Yen Thuong Station (line chart) relative to the average data of the baseline period (column chart).
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4150503&req=5

fig9: Monthly change in river discharge at Yen Thuong Station (line chart) relative to the average data of the baseline period (column chart).
Mentions: A change of river discharge is projected for Yen Thuong hydrological station, which drains an area of approximately 22,800 km2. Figure 9 illustrates the relative monthly change projected by the three climate change scenarios B1, B2, and A2 and displayed for the three future time periods of the 2030s, 2060s, and 2090s. There is a clear trend in changes throughout the year. Discharge is projected to decrease for the first six months of the year, from January to June, and increase for the other six months, from July to December. The magnitude of changes varies depending on the month and scenario. Note, however, that November and December belong to the dry season, whereas May and June belong to the wet season. Therefore, in the dry season, there are four months with decreases and two months with increases in discharge. On the other hand, discharge increases for four of the six months of the wet season and decreases for the other two months.

Bottom Line: The results indicated that temperature and evapotranspiration will increase in all months of future years.The greatest monthly increase of up to 29% and the greatest monthly decrease of up to 30% are expected in the 2090 s.As a result, decreases in dry season discharge and increases in wet season discharge are expected, with a span of ± 25% for the highest monthly changes in the 2090 s.

View Article: PubMed Central - PubMed

Affiliation: Department of Environmental and Life Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka-shi, Shizuoka 422-8526, Japan ; Faculty of Land Management, Vietnam National University of Agriculture, Hanoi 131000, Vietnam.

ABSTRACT
The impact of climate change on the seasonality of water resources in the Upper Ca River Watershed in mainland Southeast Asia was assessed using downscaled global climate models coupled with the SWAT model. The results indicated that temperature and evapotranspiration will increase in all months of future years. The area could warm as much as 3.4(°)C in the 2090 s, with an increase of annual evapotranspiration of up to 23% in the same period. We found an increase in the seasonality of precipitation (both an increase in the wet season and a decrease in the dry season). The greatest monthly increase of up to 29% and the greatest monthly decrease of up to 30% are expected in the 2090 s. As a result, decreases in dry season discharge and increases in wet season discharge are expected, with a span of ± 25% for the highest monthly changes in the 2090 s. This is expected to exacerbate the problem of seasonally uneven distribution of water resources: a large volume of water in the wet season and a scarcity of water in the dry season, a pattern that indicates the possibility of more frequent floods in the wet season and droughts in the dry season.

Show MeSH
Related in: MedlinePlus