Limits...
Effects of engineered nanomaterials on plants growth: an overview.

Aslani F, Bagheri S, Muhd Julkapli N, Juraimi AS, Hashemi FS, Baghdadi A - ScientificWorldJournal (2014)

Bottom Line: Rapid development and wide applications of nanotechnology brought about a significant increment on the number of engineered nanomaterials (ENs) inevitably entering our living system.It is assumed that the different types of engineered nanomaterials affect the different routes, behavior, and the capability of the plants.Furthermore, different, or even opposing conclusions, have been drawn from most studies on the interactions between engineered nanomaterials with plants.

View Article: PubMed Central - PubMed

Affiliation: Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia.

ABSTRACT
Rapid development and wide applications of nanotechnology brought about a significant increment on the number of engineered nanomaterials (ENs) inevitably entering our living system. Plants comprise of a very important living component of the terrestrial ecosystem. Studies on the influence of engineered nanomaterials (carbon and metal/metal oxides based) on plant growth indicated that in the excess content, engineered nanomaterials influences seed germination. It assessed the shoot-to-root ratio and the growth of the seedlings. From the toxicological studies to date, certain types of engineered nanomaterials can be toxic once they are not bound to a substrate or if they are freely circulating in living systems. It is assumed that the different types of engineered nanomaterials affect the different routes, behavior, and the capability of the plants. Furthermore, different, or even opposing conclusions, have been drawn from most studies on the interactions between engineered nanomaterials with plants. Therefore, this paper comprehensively reviews the studies on the different types of engineered nanomaterials and their interactions with different plant species, including the phytotoxicity, uptakes, and translocation of engineered nanomaterials by the plant at the whole plant and cellular level.

Show MeSH

Related in: MedlinePlus

Transmission electron microscopy images of Buckwheat (Fagopyrum esculentum) root surface under control (a) and treatment (b) with ZnO nanoparticles (1,000 mgL−1) [31].
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4150468&req=5

fig11: Transmission electron microscopy images of Buckwheat (Fagopyrum esculentum) root surface under control (a) and treatment (b) with ZnO nanoparticles (1,000 mgL−1) [31].

Mentions: A number of researchers described the key role of Zn/ZnO nanomaterials for plant growths and yield [265–267]. For example, higher plant mostly absorbs Zn as a divalent cation (Zn2+), which acts either as a functional, structural, or as the metal component of enzymes or a regulatory cofactor of numerous enzymes [266]. Zn nanomaterials are needed for chlorophyll production, fertilization, pollen function, and germination. Among the micronutrients, Zn affects the susceptibility of plants via drought stress [263]. The germination rate of the plant may be affected in the presence of Zn and ZnO. ZnO nanomaterials are hazardous and affect both the chromosomal and the cellular facets. Clear root germination effects, due to the presence of ZnO, were observed for the species of Buckwheat (Fagopyrum esculentum) [31] (Figures 10 and 11). Furthermore, the presence of the ZnO nanoparticles also promoted the permeation of onion (Allium cepa) roots and effected the roots' elongation, genetic materials, and metabolisms. The ZnO suspension meaningfully inhibited root growth of corn, with the termination of root development.


Effects of engineered nanomaterials on plants growth: an overview.

Aslani F, Bagheri S, Muhd Julkapli N, Juraimi AS, Hashemi FS, Baghdadi A - ScientificWorldJournal (2014)

Transmission electron microscopy images of Buckwheat (Fagopyrum esculentum) root surface under control (a) and treatment (b) with ZnO nanoparticles (1,000 mgL−1) [31].
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4150468&req=5

fig11: Transmission electron microscopy images of Buckwheat (Fagopyrum esculentum) root surface under control (a) and treatment (b) with ZnO nanoparticles (1,000 mgL−1) [31].
Mentions: A number of researchers described the key role of Zn/ZnO nanomaterials for plant growths and yield [265–267]. For example, higher plant mostly absorbs Zn as a divalent cation (Zn2+), which acts either as a functional, structural, or as the metal component of enzymes or a regulatory cofactor of numerous enzymes [266]. Zn nanomaterials are needed for chlorophyll production, fertilization, pollen function, and germination. Among the micronutrients, Zn affects the susceptibility of plants via drought stress [263]. The germination rate of the plant may be affected in the presence of Zn and ZnO. ZnO nanomaterials are hazardous and affect both the chromosomal and the cellular facets. Clear root germination effects, due to the presence of ZnO, were observed for the species of Buckwheat (Fagopyrum esculentum) [31] (Figures 10 and 11). Furthermore, the presence of the ZnO nanoparticles also promoted the permeation of onion (Allium cepa) roots and effected the roots' elongation, genetic materials, and metabolisms. The ZnO suspension meaningfully inhibited root growth of corn, with the termination of root development.

Bottom Line: Rapid development and wide applications of nanotechnology brought about a significant increment on the number of engineered nanomaterials (ENs) inevitably entering our living system.It is assumed that the different types of engineered nanomaterials affect the different routes, behavior, and the capability of the plants.Furthermore, different, or even opposing conclusions, have been drawn from most studies on the interactions between engineered nanomaterials with plants.

View Article: PubMed Central - PubMed

Affiliation: Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia.

ABSTRACT
Rapid development and wide applications of nanotechnology brought about a significant increment on the number of engineered nanomaterials (ENs) inevitably entering our living system. Plants comprise of a very important living component of the terrestrial ecosystem. Studies on the influence of engineered nanomaterials (carbon and metal/metal oxides based) on plant growth indicated that in the excess content, engineered nanomaterials influences seed germination. It assessed the shoot-to-root ratio and the growth of the seedlings. From the toxicological studies to date, certain types of engineered nanomaterials can be toxic once they are not bound to a substrate or if they are freely circulating in living systems. It is assumed that the different types of engineered nanomaterials affect the different routes, behavior, and the capability of the plants. Furthermore, different, or even opposing conclusions, have been drawn from most studies on the interactions between engineered nanomaterials with plants. Therefore, this paper comprehensively reviews the studies on the different types of engineered nanomaterials and their interactions with different plant species, including the phytotoxicity, uptakes, and translocation of engineered nanomaterials by the plant at the whole plant and cellular level.

Show MeSH
Related in: MedlinePlus