Limits...
Effects of engineered nanomaterials on plants growth: an overview.

Aslani F, Bagheri S, Muhd Julkapli N, Juraimi AS, Hashemi FS, Baghdadi A - ScientificWorldJournal (2014)

Bottom Line: Rapid development and wide applications of nanotechnology brought about a significant increment on the number of engineered nanomaterials (ENs) inevitably entering our living system.It is assumed that the different types of engineered nanomaterials affect the different routes, behavior, and the capability of the plants.Furthermore, different, or even opposing conclusions, have been drawn from most studies on the interactions between engineered nanomaterials with plants.

View Article: PubMed Central - PubMed

Affiliation: Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia.

ABSTRACT
Rapid development and wide applications of nanotechnology brought about a significant increment on the number of engineered nanomaterials (ENs) inevitably entering our living system. Plants comprise of a very important living component of the terrestrial ecosystem. Studies on the influence of engineered nanomaterials (carbon and metal/metal oxides based) on plant growth indicated that in the excess content, engineered nanomaterials influences seed germination. It assessed the shoot-to-root ratio and the growth of the seedlings. From the toxicological studies to date, certain types of engineered nanomaterials can be toxic once they are not bound to a substrate or if they are freely circulating in living systems. It is assumed that the different types of engineered nanomaterials affect the different routes, behavior, and the capability of the plants. Furthermore, different, or even opposing conclusions, have been drawn from most studies on the interactions between engineered nanomaterials with plants. Therefore, this paper comprehensively reviews the studies on the different types of engineered nanomaterials and their interactions with different plant species, including the phytotoxicity, uptakes, and translocation of engineered nanomaterials by the plant at the whole plant and cellular level.

Show MeSH

Related in: MedlinePlus

Release routes of engineered nanomaterials in living system.
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4150468&req=5

fig2: Release routes of engineered nanomaterials in living system.

Mentions: The advent of nanomaterials has seen increased production recently, and its interaction with living organisms is a significant cause of concern [10–14, 36]. Manufactured ENs enter living systems through intentional and unintentional releases such as solid/liquid waste streams from manufacture facilities and atmospheric emissions [4]. Nanomaterials can come into contact with living organisms via multiple routes (Figure 2), such as incidental release, direct release from industrial products or processes, as well as commercial products during intended uses that in turn enter the sewer-to-wastewater treatment plants [37, 38].


Effects of engineered nanomaterials on plants growth: an overview.

Aslani F, Bagheri S, Muhd Julkapli N, Juraimi AS, Hashemi FS, Baghdadi A - ScientificWorldJournal (2014)

Release routes of engineered nanomaterials in living system.
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4150468&req=5

fig2: Release routes of engineered nanomaterials in living system.
Mentions: The advent of nanomaterials has seen increased production recently, and its interaction with living organisms is a significant cause of concern [10–14, 36]. Manufactured ENs enter living systems through intentional and unintentional releases such as solid/liquid waste streams from manufacture facilities and atmospheric emissions [4]. Nanomaterials can come into contact with living organisms via multiple routes (Figure 2), such as incidental release, direct release from industrial products or processes, as well as commercial products during intended uses that in turn enter the sewer-to-wastewater treatment plants [37, 38].

Bottom Line: Rapid development and wide applications of nanotechnology brought about a significant increment on the number of engineered nanomaterials (ENs) inevitably entering our living system.It is assumed that the different types of engineered nanomaterials affect the different routes, behavior, and the capability of the plants.Furthermore, different, or even opposing conclusions, have been drawn from most studies on the interactions between engineered nanomaterials with plants.

View Article: PubMed Central - PubMed

Affiliation: Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia.

ABSTRACT
Rapid development and wide applications of nanotechnology brought about a significant increment on the number of engineered nanomaterials (ENs) inevitably entering our living system. Plants comprise of a very important living component of the terrestrial ecosystem. Studies on the influence of engineered nanomaterials (carbon and metal/metal oxides based) on plant growth indicated that in the excess content, engineered nanomaterials influences seed germination. It assessed the shoot-to-root ratio and the growth of the seedlings. From the toxicological studies to date, certain types of engineered nanomaterials can be toxic once they are not bound to a substrate or if they are freely circulating in living systems. It is assumed that the different types of engineered nanomaterials affect the different routes, behavior, and the capability of the plants. Furthermore, different, or even opposing conclusions, have been drawn from most studies on the interactions between engineered nanomaterials with plants. Therefore, this paper comprehensively reviews the studies on the different types of engineered nanomaterials and their interactions with different plant species, including the phytotoxicity, uptakes, and translocation of engineered nanomaterials by the plant at the whole plant and cellular level.

Show MeSH
Related in: MedlinePlus