Limits...
Effects of engineered nanomaterials on plants growth: an overview.

Aslani F, Bagheri S, Muhd Julkapli N, Juraimi AS, Hashemi FS, Baghdadi A - ScientificWorldJournal (2014)

Bottom Line: Rapid development and wide applications of nanotechnology brought about a significant increment on the number of engineered nanomaterials (ENs) inevitably entering our living system.It is assumed that the different types of engineered nanomaterials affect the different routes, behavior, and the capability of the plants.Furthermore, different, or even opposing conclusions, have been drawn from most studies on the interactions between engineered nanomaterials with plants.

View Article: PubMed Central - PubMed

Affiliation: Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia.

ABSTRACT
Rapid development and wide applications of nanotechnology brought about a significant increment on the number of engineered nanomaterials (ENs) inevitably entering our living system. Plants comprise of a very important living component of the terrestrial ecosystem. Studies on the influence of engineered nanomaterials (carbon and metal/metal oxides based) on plant growth indicated that in the excess content, engineered nanomaterials influences seed germination. It assessed the shoot-to-root ratio and the growth of the seedlings. From the toxicological studies to date, certain types of engineered nanomaterials can be toxic once they are not bound to a substrate or if they are freely circulating in living systems. It is assumed that the different types of engineered nanomaterials affect the different routes, behavior, and the capability of the plants. Furthermore, different, or even opposing conclusions, have been drawn from most studies on the interactions between engineered nanomaterials with plants. Therefore, this paper comprehensively reviews the studies on the different types of engineered nanomaterials and their interactions with different plant species, including the phytotoxicity, uptakes, and translocation of engineered nanomaterials by the plant at the whole plant and cellular level.

Show MeSH

Related in: MedlinePlus

List of carbon-based nanomaterials potential applications.
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4150468&req=5

fig1: List of carbon-based nanomaterials potential applications.

Mentions: More than 1300 commercial nanomaterials, with widespread of potential applications, are currently available [15–17, 19]. Carbon nanotubes and related materials were discovered in 1985 [8]. By 2011, the annual worldwide production of carbon-based nanomaterials was estimated to exceed 1000 tons, with some of the factory's capacity reaching to 1500 tons per year [20–22]. The first product was shown to be multiwall carbon nanotubes, with concentric cylinders reaching to 10 μm in length and 5–40 nm in diameter [21]. Consequently, a single walled carbon nanotube (SWCNTs) has been synthesized with the assistance of Co/Ni catalyst [23]. This fullerene structure exhibited promising electrical/thermal conductivity and mechanical properties. For example, a single walled carbon nanotube has a strength-to-weight ratio that is 460 times stronger than that of steel [23, 24]. The behavior of carbon-based nanomaterials is reflective of different environments and conditions [22]. For example, once the carbon-based nanomaterials have been introduced to the human health area, it will group itself with other tubes and rods as high aspect ratio nanomaterials, similar to asbestos [25]. Meanwhile, due to its inherent hydrophilicity, carbon-based nanomaterials tend to precipitate and aggregate in aqueous mediums [21]. Some studies have focused on the surface functionalization of carbon-based nanomaterials, such as the attachment of polyethylene glycol, noncovalent modification, self-assembly, and conjugation of phospholipids, lysophosphtidylcholide, and lysophosphatidylcholine to increase its stability, especially in aqueous suspension [26, 27]. This, in return, increases the application range of carbon-based nanomaterials and its derivatives in catalyst, fuel cell electrodes, orthopedic implants, plastics, battery, super capacitors, water purification system, conductive coatings, adhesive, sensors electronics, composites, aircraft, and automotive industries (Figure 1).


Effects of engineered nanomaterials on plants growth: an overview.

Aslani F, Bagheri S, Muhd Julkapli N, Juraimi AS, Hashemi FS, Baghdadi A - ScientificWorldJournal (2014)

List of carbon-based nanomaterials potential applications.
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4150468&req=5

fig1: List of carbon-based nanomaterials potential applications.
Mentions: More than 1300 commercial nanomaterials, with widespread of potential applications, are currently available [15–17, 19]. Carbon nanotubes and related materials were discovered in 1985 [8]. By 2011, the annual worldwide production of carbon-based nanomaterials was estimated to exceed 1000 tons, with some of the factory's capacity reaching to 1500 tons per year [20–22]. The first product was shown to be multiwall carbon nanotubes, with concentric cylinders reaching to 10 μm in length and 5–40 nm in diameter [21]. Consequently, a single walled carbon nanotube (SWCNTs) has been synthesized with the assistance of Co/Ni catalyst [23]. This fullerene structure exhibited promising electrical/thermal conductivity and mechanical properties. For example, a single walled carbon nanotube has a strength-to-weight ratio that is 460 times stronger than that of steel [23, 24]. The behavior of carbon-based nanomaterials is reflective of different environments and conditions [22]. For example, once the carbon-based nanomaterials have been introduced to the human health area, it will group itself with other tubes and rods as high aspect ratio nanomaterials, similar to asbestos [25]. Meanwhile, due to its inherent hydrophilicity, carbon-based nanomaterials tend to precipitate and aggregate in aqueous mediums [21]. Some studies have focused on the surface functionalization of carbon-based nanomaterials, such as the attachment of polyethylene glycol, noncovalent modification, self-assembly, and conjugation of phospholipids, lysophosphtidylcholide, and lysophosphatidylcholine to increase its stability, especially in aqueous suspension [26, 27]. This, in return, increases the application range of carbon-based nanomaterials and its derivatives in catalyst, fuel cell electrodes, orthopedic implants, plastics, battery, super capacitors, water purification system, conductive coatings, adhesive, sensors electronics, composites, aircraft, and automotive industries (Figure 1).

Bottom Line: Rapid development and wide applications of nanotechnology brought about a significant increment on the number of engineered nanomaterials (ENs) inevitably entering our living system.It is assumed that the different types of engineered nanomaterials affect the different routes, behavior, and the capability of the plants.Furthermore, different, or even opposing conclusions, have been drawn from most studies on the interactions between engineered nanomaterials with plants.

View Article: PubMed Central - PubMed

Affiliation: Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia.

ABSTRACT
Rapid development and wide applications of nanotechnology brought about a significant increment on the number of engineered nanomaterials (ENs) inevitably entering our living system. Plants comprise of a very important living component of the terrestrial ecosystem. Studies on the influence of engineered nanomaterials (carbon and metal/metal oxides based) on plant growth indicated that in the excess content, engineered nanomaterials influences seed germination. It assessed the shoot-to-root ratio and the growth of the seedlings. From the toxicological studies to date, certain types of engineered nanomaterials can be toxic once they are not bound to a substrate or if they are freely circulating in living systems. It is assumed that the different types of engineered nanomaterials affect the different routes, behavior, and the capability of the plants. Furthermore, different, or even opposing conclusions, have been drawn from most studies on the interactions between engineered nanomaterials with plants. Therefore, this paper comprehensively reviews the studies on the different types of engineered nanomaterials and their interactions with different plant species, including the phytotoxicity, uptakes, and translocation of engineered nanomaterials by the plant at the whole plant and cellular level.

Show MeSH
Related in: MedlinePlus