Limits...
The treatment of PPCP-containing sewage in an anoxic/aerobic reactor coupled with a novel design of solid plain graphite-plates microbial fuel cell.

Chang YT, Yang CW, Chang YJ, Chang TC, Wei DJ - Biomed Res Int (2014)

Bottom Line: A novel design of solid plain graphite plates (SPGRPs) was used for the high surface area biodegradation of the PPCP-containing sewage and for the generation of electricity.A maximum power density of 532.61 mW/cm(2) and a maximum coulombic efficiency of 25.20% were measured for the SPGRP MFC at the anode.Distinct differences in the bacterial community were presented at various locations including the mixed liquor suspended solids and biofilms.

View Article: PubMed Central - PubMed

Affiliation: Department of Microbiology, Soochow University, 70 Linhsi Road, Shilin District, Taipei 11102, Taiwan.

ABSTRACT
Synthetic sewage containing high concentrations of pharmaceuticals and personal care products (PPCPs, mg/L level) was treated using an anoxic/aerobic (A/O) reactor coupled with a microbial fuel cell (MFC) at hydraulic retention time (HRT) of 8 h. A novel design of solid plain graphite plates (SPGRPs) was used for the high surface area biodegradation of the PPCP-containing sewage and for the generation of electricity. The average CODCr and total nitrogen removal efficiencies achieved were 97.20% and 83.75%, respectively. High removal efficiencies of pharmaceuticals, including acetaminophen, ibuprofen, and sulfamethoxazole, were also obtained and ranged from 98.21% to 99.89%. A maximum power density of 532.61 mW/cm(2) and a maximum coulombic efficiency of 25.20% were measured for the SPGRP MFC at the anode. Distinct differences in the bacterial community were presented at various locations including the mixed liquor suspended solids and biofilms. The bacterial groups involved in PPCP biodegradation were identified as Dechloromonas spp., Sphingomonas sp., and Pseudomonas aeruginosa. This design, which couples an A/O reactor with a novel design of SPGRP MFC, allows the simultaneous removal of PPCPs and successful electricity production.

Show MeSH

Related in: MedlinePlus

Bacterial community analysis of the MFC A/O reactor. The ratio of identified bacterial species to all bacteria cloned on the 114th day (class level): (a) anoxic reactor; (b) aerobic reactor.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4150452&req=5

fig6: Bacterial community analysis of the MFC A/O reactor. The ratio of identified bacterial species to all bacteria cloned on the 114th day (class level): (a) anoxic reactor; (b) aerobic reactor.

Mentions: Figure 6 provides detailed information on the various bacterial communities in the MFC A/O system at the class-level species using the 16S rDNA clone library. The dominant bacteria in the aerobic reactor were Proteobacteria, including β-Proteobacteria (53.50%), δ-Proteobacteria (14.65%), γ-Proteobacteria (8.92%), and α-Proteobacteria (8.92%). In addition, in terms of the three sampling locations within the reactor, the dominant species at the phylum-level are different. The percentage of β-Proteobacteria was 81.13% within the GRP biofilms, compared to 55.0% within the MLSS and 29.69% within the PEM biofilms. The relative abundance of β-Proteobacteria is probably due to the fact that several groups of aerobic or facultative bacteria are well equipped to carry out aromatic degradation. In contrast, higher percentages of α-Proteobacteria, γ-Proteobacteria, δ-Proteobacteria, and Sphingobacteria were found to be present in the MLSS and PEM biofilms, but these groups were found to be much less abundant in the GRP biofilm. Furthermore, the anoxic reactor within the A/O system was found to have a specific dominant bacterial community that included Clostridia-Firmicutes (24.85%), ε-Proteobacteria (23.03%), β-Proteobacteria (15.76%), Bacteroidetes (10.16%), and δ-Proteobacteria (7.88%). Many of these phyla can act as anode-respiring bacteria, which are defined as a bacterial population with a respiration process that can use an anode as their electron acceptor [13]. The percentage of ε-Proteobacteria in the MLSS was 27.27% and in the PEM biofilms was 25.0%, which should be compared with that in the GRP biofilms, which was 15.68%. Clostridia and β-Proteobacteria were dominant in this reactor with ranges from 20.83% to 27.45% and from 12.12% to 19.61% for the three different samples, respectively. Bacterial diversity has been found to vary at the anode of the MFCs when various different substrates are fed. For example, a two-chambered MFC using chocolate industry wastewater as the substrate had the following phyla at the anode: α-Proteobacteria (9.1%), β-Proteobacteria (50.6%), γ-Proteobacteria (0.8%), and Firmicutes (4.9%) [29].


The treatment of PPCP-containing sewage in an anoxic/aerobic reactor coupled with a novel design of solid plain graphite-plates microbial fuel cell.

Chang YT, Yang CW, Chang YJ, Chang TC, Wei DJ - Biomed Res Int (2014)

Bacterial community analysis of the MFC A/O reactor. The ratio of identified bacterial species to all bacteria cloned on the 114th day (class level): (a) anoxic reactor; (b) aerobic reactor.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4150452&req=5

fig6: Bacterial community analysis of the MFC A/O reactor. The ratio of identified bacterial species to all bacteria cloned on the 114th day (class level): (a) anoxic reactor; (b) aerobic reactor.
Mentions: Figure 6 provides detailed information on the various bacterial communities in the MFC A/O system at the class-level species using the 16S rDNA clone library. The dominant bacteria in the aerobic reactor were Proteobacteria, including β-Proteobacteria (53.50%), δ-Proteobacteria (14.65%), γ-Proteobacteria (8.92%), and α-Proteobacteria (8.92%). In addition, in terms of the three sampling locations within the reactor, the dominant species at the phylum-level are different. The percentage of β-Proteobacteria was 81.13% within the GRP biofilms, compared to 55.0% within the MLSS and 29.69% within the PEM biofilms. The relative abundance of β-Proteobacteria is probably due to the fact that several groups of aerobic or facultative bacteria are well equipped to carry out aromatic degradation. In contrast, higher percentages of α-Proteobacteria, γ-Proteobacteria, δ-Proteobacteria, and Sphingobacteria were found to be present in the MLSS and PEM biofilms, but these groups were found to be much less abundant in the GRP biofilm. Furthermore, the anoxic reactor within the A/O system was found to have a specific dominant bacterial community that included Clostridia-Firmicutes (24.85%), ε-Proteobacteria (23.03%), β-Proteobacteria (15.76%), Bacteroidetes (10.16%), and δ-Proteobacteria (7.88%). Many of these phyla can act as anode-respiring bacteria, which are defined as a bacterial population with a respiration process that can use an anode as their electron acceptor [13]. The percentage of ε-Proteobacteria in the MLSS was 27.27% and in the PEM biofilms was 25.0%, which should be compared with that in the GRP biofilms, which was 15.68%. Clostridia and β-Proteobacteria were dominant in this reactor with ranges from 20.83% to 27.45% and from 12.12% to 19.61% for the three different samples, respectively. Bacterial diversity has been found to vary at the anode of the MFCs when various different substrates are fed. For example, a two-chambered MFC using chocolate industry wastewater as the substrate had the following phyla at the anode: α-Proteobacteria (9.1%), β-Proteobacteria (50.6%), γ-Proteobacteria (0.8%), and Firmicutes (4.9%) [29].

Bottom Line: A novel design of solid plain graphite plates (SPGRPs) was used for the high surface area biodegradation of the PPCP-containing sewage and for the generation of electricity.A maximum power density of 532.61 mW/cm(2) and a maximum coulombic efficiency of 25.20% were measured for the SPGRP MFC at the anode.Distinct differences in the bacterial community were presented at various locations including the mixed liquor suspended solids and biofilms.

View Article: PubMed Central - PubMed

Affiliation: Department of Microbiology, Soochow University, 70 Linhsi Road, Shilin District, Taipei 11102, Taiwan.

ABSTRACT
Synthetic sewage containing high concentrations of pharmaceuticals and personal care products (PPCPs, mg/L level) was treated using an anoxic/aerobic (A/O) reactor coupled with a microbial fuel cell (MFC) at hydraulic retention time (HRT) of 8 h. A novel design of solid plain graphite plates (SPGRPs) was used for the high surface area biodegradation of the PPCP-containing sewage and for the generation of electricity. The average CODCr and total nitrogen removal efficiencies achieved were 97.20% and 83.75%, respectively. High removal efficiencies of pharmaceuticals, including acetaminophen, ibuprofen, and sulfamethoxazole, were also obtained and ranged from 98.21% to 99.89%. A maximum power density of 532.61 mW/cm(2) and a maximum coulombic efficiency of 25.20% were measured for the SPGRP MFC at the anode. Distinct differences in the bacterial community were presented at various locations including the mixed liquor suspended solids and biofilms. The bacterial groups involved in PPCP biodegradation were identified as Dechloromonas spp., Sphingomonas sp., and Pseudomonas aeruginosa. This design, which couples an A/O reactor with a novel design of SPGRP MFC, allows the simultaneous removal of PPCPs and successful electricity production.

Show MeSH
Related in: MedlinePlus