Limits...
Relationship between perceptual learning in speech and statistical learning in younger and older adults.

Neger TM, Rietveld T, Janse E - Front Hum Neurosci (2014)

Bottom Line: Younger and older adults showed similar amounts of perceptual learning, but only younger adults showed significant statistical learning.In younger adults, amount of adaptation was associated with lexical knowledge and with statistical learning ability.Results suggest that perceptual and statistical learning share mechanisms of implicit regularity detection, but that the ability to detect statistical regularities is impaired in older adults if visual sequences are presented quickly.

View Article: PubMed Central - PubMed

Affiliation: Centre for Language Studies, Radboud University Nijmegen Nijmegen, Netherlands ; International Max Planck Research School for Language Sciences Nijmegen, Netherlands.

ABSTRACT
Within a few sentences, listeners learn to understand severely degraded speech such as noise-vocoded speech. However, individuals vary in the amount of such perceptual learning and it is unclear what underlies these differences. The present study investigates whether perceptual learning in speech relates to statistical learning, as sensitivity to probabilistic information may aid identification of relevant cues in novel speech input. If statistical learning and perceptual learning (partly) draw on the same general mechanisms, then statistical learning in a non-auditory modality using non-linguistic sequences should predict adaptation to degraded speech. In the present study, 73 older adults (aged over 60 years) and 60 younger adults (aged between 18 and 30 years) performed a visual artificial grammar learning task and were presented with 60 meaningful noise-vocoded sentences in an auditory recall task. Within age groups, sentence recognition performance over exposure was analyzed as a function of statistical learning performance, and other variables that may predict learning (i.e., hearing, vocabulary, attention switching control, working memory, and processing speed). Younger and older adults showed similar amounts of perceptual learning, but only younger adults showed significant statistical learning. In older adults, improvement in understanding noise-vocoded speech was constrained by age. In younger adults, amount of adaptation was associated with lexical knowledge and with statistical learning ability. Thus, individual differences in general cognitive abilities explain listeners' variability in adapting to noise-vocoded speech. Results suggest that perceptual and statistical learning share mechanisms of implicit regularity detection, but that the ability to detect statistical regularities is impaired in older adults if visual sequences are presented quickly.

No MeSH data available.


Related in: MedlinePlus

Performance on the statistical learning task. A drop in facilitation score from the end of the exposure phase (blocks 7–8) to the test phase (block 9) indicates learning. Error bars indicate two standard errors from the mean. (A) Mean statistical learning performance per age group and block. The area between the dotted lines represents where the effect of removing the underlying regularities should be observed. (B) Mean statistical learning performance per age group and phase. (C) Boxplot of statistical learning performance in younger and older adults (individual exposure-to-test slopes from the statistical model). More negative slopes reflect more learning.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4150448&req=5

Figure 3: Performance on the statistical learning task. A drop in facilitation score from the end of the exposure phase (blocks 7–8) to the test phase (block 9) indicates learning. Error bars indicate two standard errors from the mean. (A) Mean statistical learning performance per age group and block. The area between the dotted lines represents where the effect of removing the underlying regularities should be observed. (B) Mean statistical learning performance per age group and phase. (C) Boxplot of statistical learning performance in younger and older adults (individual exposure-to-test slopes from the statistical model). More negative slopes reflect more learning.

Mentions: Valid facilitation scores were restricted to those within 2.5 SD from the mean facilitation score within each age group. Table 3 shows the average performance of younger and older adults on the statistical learning task in terms of response times and facilitation score. As expected, younger adults were significantly faster in responding to the first target (t = −84.30, df = 23249.45, p < 0.001) and to the second target (t = −104.34, df = 23585.75, p < 0.001) than older adults. Note that all responses in the statistical learning task were accurate as the experimental task only proceeded when a participant had clicked on the correct shape. Figure 3A shows the average facilitation scores for both age groups over block2. Figure 3B displays the mean facilitation scores at the end of the exposure phase, in the test phase and in the recovery phase to illustrate the learning effect. Moreover, the range of statistical learning that was observed within each age group is displayed in Figure 3C. Estimates of the best model within each age group are displayed in Table 4.


Relationship between perceptual learning in speech and statistical learning in younger and older adults.

Neger TM, Rietveld T, Janse E - Front Hum Neurosci (2014)

Performance on the statistical learning task. A drop in facilitation score from the end of the exposure phase (blocks 7–8) to the test phase (block 9) indicates learning. Error bars indicate two standard errors from the mean. (A) Mean statistical learning performance per age group and block. The area between the dotted lines represents where the effect of removing the underlying regularities should be observed. (B) Mean statistical learning performance per age group and phase. (C) Boxplot of statistical learning performance in younger and older adults (individual exposure-to-test slopes from the statistical model). More negative slopes reflect more learning.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4150448&req=5

Figure 3: Performance on the statistical learning task. A drop in facilitation score from the end of the exposure phase (blocks 7–8) to the test phase (block 9) indicates learning. Error bars indicate two standard errors from the mean. (A) Mean statistical learning performance per age group and block. The area between the dotted lines represents where the effect of removing the underlying regularities should be observed. (B) Mean statistical learning performance per age group and phase. (C) Boxplot of statistical learning performance in younger and older adults (individual exposure-to-test slopes from the statistical model). More negative slopes reflect more learning.
Mentions: Valid facilitation scores were restricted to those within 2.5 SD from the mean facilitation score within each age group. Table 3 shows the average performance of younger and older adults on the statistical learning task in terms of response times and facilitation score. As expected, younger adults were significantly faster in responding to the first target (t = −84.30, df = 23249.45, p < 0.001) and to the second target (t = −104.34, df = 23585.75, p < 0.001) than older adults. Note that all responses in the statistical learning task were accurate as the experimental task only proceeded when a participant had clicked on the correct shape. Figure 3A shows the average facilitation scores for both age groups over block2. Figure 3B displays the mean facilitation scores at the end of the exposure phase, in the test phase and in the recovery phase to illustrate the learning effect. Moreover, the range of statistical learning that was observed within each age group is displayed in Figure 3C. Estimates of the best model within each age group are displayed in Table 4.

Bottom Line: Younger and older adults showed similar amounts of perceptual learning, but only younger adults showed significant statistical learning.In younger adults, amount of adaptation was associated with lexical knowledge and with statistical learning ability.Results suggest that perceptual and statistical learning share mechanisms of implicit regularity detection, but that the ability to detect statistical regularities is impaired in older adults if visual sequences are presented quickly.

View Article: PubMed Central - PubMed

Affiliation: Centre for Language Studies, Radboud University Nijmegen Nijmegen, Netherlands ; International Max Planck Research School for Language Sciences Nijmegen, Netherlands.

ABSTRACT
Within a few sentences, listeners learn to understand severely degraded speech such as noise-vocoded speech. However, individuals vary in the amount of such perceptual learning and it is unclear what underlies these differences. The present study investigates whether perceptual learning in speech relates to statistical learning, as sensitivity to probabilistic information may aid identification of relevant cues in novel speech input. If statistical learning and perceptual learning (partly) draw on the same general mechanisms, then statistical learning in a non-auditory modality using non-linguistic sequences should predict adaptation to degraded speech. In the present study, 73 older adults (aged over 60 years) and 60 younger adults (aged between 18 and 30 years) performed a visual artificial grammar learning task and were presented with 60 meaningful noise-vocoded sentences in an auditory recall task. Within age groups, sentence recognition performance over exposure was analyzed as a function of statistical learning performance, and other variables that may predict learning (i.e., hearing, vocabulary, attention switching control, working memory, and processing speed). Younger and older adults showed similar amounts of perceptual learning, but only younger adults showed significant statistical learning. In older adults, improvement in understanding noise-vocoded speech was constrained by age. In younger adults, amount of adaptation was associated with lexical knowledge and with statistical learning ability. Thus, individual differences in general cognitive abilities explain listeners' variability in adapting to noise-vocoded speech. Results suggest that perceptual and statistical learning share mechanisms of implicit regularity detection, but that the ability to detect statistical regularities is impaired in older adults if visual sequences are presented quickly.

No MeSH data available.


Related in: MedlinePlus