Limits...
Relationship between perceptual learning in speech and statistical learning in younger and older adults.

Neger TM, Rietveld T, Janse E - Front Hum Neurosci (2014)

Bottom Line: Younger and older adults showed similar amounts of perceptual learning, but only younger adults showed significant statistical learning.In younger adults, amount of adaptation was associated with lexical knowledge and with statistical learning ability.Results suggest that perceptual and statistical learning share mechanisms of implicit regularity detection, but that the ability to detect statistical regularities is impaired in older adults if visual sequences are presented quickly.

View Article: PubMed Central - PubMed

Affiliation: Centre for Language Studies, Radboud University Nijmegen Nijmegen, Netherlands ; International Max Planck Research School for Language Sciences Nijmegen, Netherlands.

ABSTRACT
Within a few sentences, listeners learn to understand severely degraded speech such as noise-vocoded speech. However, individuals vary in the amount of such perceptual learning and it is unclear what underlies these differences. The present study investigates whether perceptual learning in speech relates to statistical learning, as sensitivity to probabilistic information may aid identification of relevant cues in novel speech input. If statistical learning and perceptual learning (partly) draw on the same general mechanisms, then statistical learning in a non-auditory modality using non-linguistic sequences should predict adaptation to degraded speech. In the present study, 73 older adults (aged over 60 years) and 60 younger adults (aged between 18 and 30 years) performed a visual artificial grammar learning task and were presented with 60 meaningful noise-vocoded sentences in an auditory recall task. Within age groups, sentence recognition performance over exposure was analyzed as a function of statistical learning performance, and other variables that may predict learning (i.e., hearing, vocabulary, attention switching control, working memory, and processing speed). Younger and older adults showed similar amounts of perceptual learning, but only younger adults showed significant statistical learning. In older adults, improvement in understanding noise-vocoded speech was constrained by age. In younger adults, amount of adaptation was associated with lexical knowledge and with statistical learning ability. Thus, individual differences in general cognitive abilities explain listeners' variability in adapting to noise-vocoded speech. Results suggest that perceptual and statistical learning share mechanisms of implicit regularity detection, but that the ability to detect statistical regularities is impaired in older adults if visual sequences are presented quickly.

No MeSH data available.


Related in: MedlinePlus

Structure of the statistical learning task. (A) Structure of the grammar in which the first target is always displayed on the left side of the screen and the second target is always displayed on the right side of the screen. (B) Procedure of a grammatical trial during the exposure phase.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4150448&req=5

Figure 2: Structure of the statistical learning task. (A) Structure of the grammar in which the first target is always displayed on the left side of the screen and the second target is always displayed on the right side of the screen. (B) Procedure of a grammatical trial during the exposure phase.

Mentions: Participants were presented with familiar, geometrical shapes in a 2 × 2 design on the computer screen (see Figure 2B), in which one shape on either side of the screen served as target and one as distractor item. Target shapes were sequentially highlighted by a visual marker and participants' task was to click as fast as possible on the highlighted target. The first target was always one on the left side of the screen (i.e., upper or lower one in the first column) and the second target was always on the right side of the screen (i.e., upper or lower one in the second column). The second target was only highlighted after the participant had clicked on the first target item. Crucially, which of the two items in the right-hand column would be highlighted was predictable on the basis of the first target [e.g., in Figure 2B, a triangle would always be followed by a star or a square (the latter is not in the display), but never by a heart].


Relationship between perceptual learning in speech and statistical learning in younger and older adults.

Neger TM, Rietveld T, Janse E - Front Hum Neurosci (2014)

Structure of the statistical learning task. (A) Structure of the grammar in which the first target is always displayed on the left side of the screen and the second target is always displayed on the right side of the screen. (B) Procedure of a grammatical trial during the exposure phase.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4150448&req=5

Figure 2: Structure of the statistical learning task. (A) Structure of the grammar in which the first target is always displayed on the left side of the screen and the second target is always displayed on the right side of the screen. (B) Procedure of a grammatical trial during the exposure phase.
Mentions: Participants were presented with familiar, geometrical shapes in a 2 × 2 design on the computer screen (see Figure 2B), in which one shape on either side of the screen served as target and one as distractor item. Target shapes were sequentially highlighted by a visual marker and participants' task was to click as fast as possible on the highlighted target. The first target was always one on the left side of the screen (i.e., upper or lower one in the first column) and the second target was always on the right side of the screen (i.e., upper or lower one in the second column). The second target was only highlighted after the participant had clicked on the first target item. Crucially, which of the two items in the right-hand column would be highlighted was predictable on the basis of the first target [e.g., in Figure 2B, a triangle would always be followed by a star or a square (the latter is not in the display), but never by a heart].

Bottom Line: Younger and older adults showed similar amounts of perceptual learning, but only younger adults showed significant statistical learning.In younger adults, amount of adaptation was associated with lexical knowledge and with statistical learning ability.Results suggest that perceptual and statistical learning share mechanisms of implicit regularity detection, but that the ability to detect statistical regularities is impaired in older adults if visual sequences are presented quickly.

View Article: PubMed Central - PubMed

Affiliation: Centre for Language Studies, Radboud University Nijmegen Nijmegen, Netherlands ; International Max Planck Research School for Language Sciences Nijmegen, Netherlands.

ABSTRACT
Within a few sentences, listeners learn to understand severely degraded speech such as noise-vocoded speech. However, individuals vary in the amount of such perceptual learning and it is unclear what underlies these differences. The present study investigates whether perceptual learning in speech relates to statistical learning, as sensitivity to probabilistic information may aid identification of relevant cues in novel speech input. If statistical learning and perceptual learning (partly) draw on the same general mechanisms, then statistical learning in a non-auditory modality using non-linguistic sequences should predict adaptation to degraded speech. In the present study, 73 older adults (aged over 60 years) and 60 younger adults (aged between 18 and 30 years) performed a visual artificial grammar learning task and were presented with 60 meaningful noise-vocoded sentences in an auditory recall task. Within age groups, sentence recognition performance over exposure was analyzed as a function of statistical learning performance, and other variables that may predict learning (i.e., hearing, vocabulary, attention switching control, working memory, and processing speed). Younger and older adults showed similar amounts of perceptual learning, but only younger adults showed significant statistical learning. In older adults, improvement in understanding noise-vocoded speech was constrained by age. In younger adults, amount of adaptation was associated with lexical knowledge and with statistical learning ability. Thus, individual differences in general cognitive abilities explain listeners' variability in adapting to noise-vocoded speech. Results suggest that perceptual and statistical learning share mechanisms of implicit regularity detection, but that the ability to detect statistical regularities is impaired in older adults if visual sequences are presented quickly.

No MeSH data available.


Related in: MedlinePlus