Limits...
Protonation equilibria of biologically active ligands in mixed aqueous organic solvents.

El-Sherif AA, Shoukry MM, Abd Elkarim AT, Barakat MH - Bioinorg Chem Appl (2014)

Bottom Line: The review is mainly concerned with the protonation equilibria of biologically active ligands like amino acids, peptides, DNA constituents, and amino acid esters in nonaqueous media.Equilibrium concentrations of proton-ligand formation as a function of pH were investigated.Also, thermodynamics associated with protonation equilibria were also discussed.

View Article: PubMed Central - PubMed

Affiliation: Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt ; Department of Chemistry, Faculty of Arts and Science, Northern Border University, Rafha, Saudi Arabia.

ABSTRACT
The review is mainly concerned with the protonation equilibria of biologically active ligands like amino acids, peptides, DNA constituents, and amino acid esters in nonaqueous media. Equilibrium concentrations of proton-ligand formation as a function of pH were investigated. Also, thermodynamics associated with protonation equilibria were also discussed.

No MeSH data available.


© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4150405&req=5

Mentions: (2) Protonation Equilibria of L-Tryptophane in Mixed Water-Ethanol Medium (Figure 2). Two protonation equilibria were found for L-tryptophan. The first protonation constant was attributed to the protonation of –NH2 and the second one was related to protonation of carboxyl group. No protonation constants were found related to the protonation of the nitrogen atom of the indole ring of this amino acid. The decrease in log⁡10⁡K1 values of L-tryptophane was observed with the increase of ethanol concentration. This can be explained by better solvation of the dipolar ionic form.


Protonation equilibria of biologically active ligands in mixed aqueous organic solvents.

El-Sherif AA, Shoukry MM, Abd Elkarim AT, Barakat MH - Bioinorg Chem Appl (2014)

© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4150405&req=5

Mentions: (2) Protonation Equilibria of L-Tryptophane in Mixed Water-Ethanol Medium (Figure 2). Two protonation equilibria were found for L-tryptophan. The first protonation constant was attributed to the protonation of –NH2 and the second one was related to protonation of carboxyl group. No protonation constants were found related to the protonation of the nitrogen atom of the indole ring of this amino acid. The decrease in log⁡10⁡K1 values of L-tryptophane was observed with the increase of ethanol concentration. This can be explained by better solvation of the dipolar ionic form.

Bottom Line: The review is mainly concerned with the protonation equilibria of biologically active ligands like amino acids, peptides, DNA constituents, and amino acid esters in nonaqueous media.Equilibrium concentrations of proton-ligand formation as a function of pH were investigated.Also, thermodynamics associated with protonation equilibria were also discussed.

View Article: PubMed Central - PubMed

Affiliation: Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt ; Department of Chemistry, Faculty of Arts and Science, Northern Border University, Rafha, Saudi Arabia.

ABSTRACT
The review is mainly concerned with the protonation equilibria of biologically active ligands like amino acids, peptides, DNA constituents, and amino acid esters in nonaqueous media. Equilibrium concentrations of proton-ligand formation as a function of pH were investigated. Also, thermodynamics associated with protonation equilibria were also discussed.

No MeSH data available.