Limits...
Wearable wireless tactile display for virtual interactions with soft bodies.

Frediani G, Mazzei D, De Rossi DE, Carpi F - Front Bioeng Biotechnol (2014)

Bottom Line: The device was based on dielectric elastomer actuators, as high-performance electromechanically active polymers.The actuator was arranged at the user's fingertip, integrated within a plastic case, which also hosted a compact high-voltage circuitry.We present the structure of the device and a characterization of it, in terms of electromechanical response and stress relaxation.

View Article: PubMed Central - PubMed

Affiliation: School of Engineering and Material Science, Queen Mary University of London , London , UK.

ABSTRACT
We describe here a wearable, wireless, compact, and lightweight tactile display, able to mechanically stimulate the fingertip of users, so as to simulate contact with soft bodies in virtual environments. The device was based on dielectric elastomer actuators, as high-performance electromechanically active polymers. The actuator was arranged at the user's fingertip, integrated within a plastic case, which also hosted a compact high-voltage circuitry. A custom-made wireless control unit was arranged on the forearm and connected to the display via low-voltage leads. We present the structure of the device and a characterization of it, in terms of electromechanical response and stress relaxation. Furthermore, we present results of a psychophysical test aimed at assessing the ability of the system to generate different levels of force that can be perceived by users.

No MeSH data available.


Related in: MedlinePlus

Outcome of the psychophysical tests: JND as a function of the stimulus intensity (force). Error bars represent a 95% confidence interval.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4150388&req=5

Figure 10: Outcome of the psychophysical tests: JND as a function of the stimulus intensity (force). Error bars represent a 95% confidence interval.

Mentions: Figure 10 reports results from the perceptual psychophysical tests. JND values are plotted as a function of the five equally spaced reference forces F1–F5 defined in Figure 8. As an overall measure of the ability of the device to generate small differences in stimuli that can be perceived by the user, the Weber constant (slope of the curve) was calculated from a linearization over the last four data points. It was found to be k = 0.4.


Wearable wireless tactile display for virtual interactions with soft bodies.

Frediani G, Mazzei D, De Rossi DE, Carpi F - Front Bioeng Biotechnol (2014)

Outcome of the psychophysical tests: JND as a function of the stimulus intensity (force). Error bars represent a 95% confidence interval.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4150388&req=5

Figure 10: Outcome of the psychophysical tests: JND as a function of the stimulus intensity (force). Error bars represent a 95% confidence interval.
Mentions: Figure 10 reports results from the perceptual psychophysical tests. JND values are plotted as a function of the five equally spaced reference forces F1–F5 defined in Figure 8. As an overall measure of the ability of the device to generate small differences in stimuli that can be perceived by the user, the Weber constant (slope of the curve) was calculated from a linearization over the last four data points. It was found to be k = 0.4.

Bottom Line: The device was based on dielectric elastomer actuators, as high-performance electromechanically active polymers.The actuator was arranged at the user's fingertip, integrated within a plastic case, which also hosted a compact high-voltage circuitry.We present the structure of the device and a characterization of it, in terms of electromechanical response and stress relaxation.

View Article: PubMed Central - PubMed

Affiliation: School of Engineering and Material Science, Queen Mary University of London , London , UK.

ABSTRACT
We describe here a wearable, wireless, compact, and lightweight tactile display, able to mechanically stimulate the fingertip of users, so as to simulate contact with soft bodies in virtual environments. The device was based on dielectric elastomer actuators, as high-performance electromechanically active polymers. The actuator was arranged at the user's fingertip, integrated within a plastic case, which also hosted a compact high-voltage circuitry. A custom-made wireless control unit was arranged on the forearm and connected to the display via low-voltage leads. We present the structure of the device and a characterization of it, in terms of electromechanical response and stress relaxation. Furthermore, we present results of a psychophysical test aimed at assessing the ability of the system to generate different levels of force that can be perceived by users.

No MeSH data available.


Related in: MedlinePlus