Limits...
Glycolysis in patients with age-related macular degeneration.

Yokosako K, Mimura T, Funatsu H, Noma H, Goto M, Kamei Y, Kondo A, Matsubara M - Open Ophthalmol J (2014)

Bottom Line: There were no significant differences of any of these glycolysis metabolites between the tAMD and PCV groups.Multivariate analysis revealed that none of the variables tested, including patient background factors (age, hypertension, diabetes, hyperlipidemia, cerebrovascular disease, alcohol, smoking, visual acuity, and AMD phenotype), were significantly associated with the lactate/pyruvate ratio.A high lactate/pyruvate ratio is a well-known marker of mitochondrial impairment, and it indicates poor oxidative function in AMD.

View Article: PubMed Central - PubMed

Affiliation: Department of Ophthalmology, Tokyo Women's Medical University Medical Center East, Tokyo, Japan.

ABSTRACT

Purpose: Retinal adenosine triphosphate is mainly produced via glycolysis, so inhibition of glycolysis may promote the onset and progression of age-related macular degeneration (AMD). When glycolysis is inhibited, pyruvate is metabolized by lactic acid fermentation instead of entering the mitochondrial tricarboxylic acid (TCA) cycle. We measured urinary pyruvate and lactate levels in patients with AMD.

Methods: Eight patients with typical AMD (tAMD group) and 9 patients with polypoidal choroidal vasculopathy (PCV group) were enrolled. Urinary levels of pyruvate, lactate, α-hydroxybutyrate, and β-hydroxybutyrate were measured in all patients.

Results: The mean urinary levels of pyruvate and lactate were 8.0 ± 2.8 and 7.5 ± 8.3 μg/mg creatinine (reference values: 0.5-6.6 and 0.0-1.6), respectively, with the mean increase over the reference value being 83.6 ± 51.1% and 426.5 ± 527.8%, respectively. In 12 patients (70.6%), the lactate/pyruvate ratio was above the reference range. Urinary levels of α-hydroxybutyrate and β-hydroxybutyrate were decreased by -31.9 ± 15.2% and -33.1 ± 17.5% compared with the mean reference values. There were no significant differences of any of these glycolysis metabolites between the tAMD and PCV groups. Multivariate analysis revealed that none of the variables tested, including patient background factors (age, hypertension, diabetes, hyperlipidemia, cerebrovascular disease, alcohol, smoking, visual acuity, and AMD phenotype), were significantly associated with the lactate/pyruvate ratio.

Conclusion: A high lactate/pyruvate ratio is a well-known marker of mitochondrial impairment, and it indicates poor oxidative function in AMD. Our results suggest that increased lactate levels may be implicated in the pathogenesis of AMD.

No MeSH data available.


Related in: MedlinePlus

Urinary pyruvate concentration and percent increase of pyruvate relative to the mean reference value.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4150380&req=5

Figure 1: Urinary pyruvate concentration and percent increase of pyruvate relative to the mean reference value.

Mentions: The mean urinary pyruvate concentration and the mean percent increase of pyruvate (calculated relative to the mean + standard deviation) were 8.0 ± 2.8 (μg/mg creatinine) and 83.6 ± 51.1 (%), respectively. In 11 patients (64.7%), the urinary pyruvate level was above the reference value (Table 2, Fig. 1). The mean urinary concentration and mean percent increase of lactate were 7.5 ± 8.3 and 426.5 ± 527.8%, respectively, and 12 patients (70.6%) showed an increase of lactate above the reference value (Table 2, Fig. 2).


Glycolysis in patients with age-related macular degeneration.

Yokosako K, Mimura T, Funatsu H, Noma H, Goto M, Kamei Y, Kondo A, Matsubara M - Open Ophthalmol J (2014)

Urinary pyruvate concentration and percent increase of pyruvate relative to the mean reference value.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4150380&req=5

Figure 1: Urinary pyruvate concentration and percent increase of pyruvate relative to the mean reference value.
Mentions: The mean urinary pyruvate concentration and the mean percent increase of pyruvate (calculated relative to the mean + standard deviation) were 8.0 ± 2.8 (μg/mg creatinine) and 83.6 ± 51.1 (%), respectively. In 11 patients (64.7%), the urinary pyruvate level was above the reference value (Table 2, Fig. 1). The mean urinary concentration and mean percent increase of lactate were 7.5 ± 8.3 and 426.5 ± 527.8%, respectively, and 12 patients (70.6%) showed an increase of lactate above the reference value (Table 2, Fig. 2).

Bottom Line: There were no significant differences of any of these glycolysis metabolites between the tAMD and PCV groups.Multivariate analysis revealed that none of the variables tested, including patient background factors (age, hypertension, diabetes, hyperlipidemia, cerebrovascular disease, alcohol, smoking, visual acuity, and AMD phenotype), were significantly associated with the lactate/pyruvate ratio.A high lactate/pyruvate ratio is a well-known marker of mitochondrial impairment, and it indicates poor oxidative function in AMD.

View Article: PubMed Central - PubMed

Affiliation: Department of Ophthalmology, Tokyo Women's Medical University Medical Center East, Tokyo, Japan.

ABSTRACT

Purpose: Retinal adenosine triphosphate is mainly produced via glycolysis, so inhibition of glycolysis may promote the onset and progression of age-related macular degeneration (AMD). When glycolysis is inhibited, pyruvate is metabolized by lactic acid fermentation instead of entering the mitochondrial tricarboxylic acid (TCA) cycle. We measured urinary pyruvate and lactate levels in patients with AMD.

Methods: Eight patients with typical AMD (tAMD group) and 9 patients with polypoidal choroidal vasculopathy (PCV group) were enrolled. Urinary levels of pyruvate, lactate, α-hydroxybutyrate, and β-hydroxybutyrate were measured in all patients.

Results: The mean urinary levels of pyruvate and lactate were 8.0 ± 2.8 and 7.5 ± 8.3 μg/mg creatinine (reference values: 0.5-6.6 and 0.0-1.6), respectively, with the mean increase over the reference value being 83.6 ± 51.1% and 426.5 ± 527.8%, respectively. In 12 patients (70.6%), the lactate/pyruvate ratio was above the reference range. Urinary levels of α-hydroxybutyrate and β-hydroxybutyrate were decreased by -31.9 ± 15.2% and -33.1 ± 17.5% compared with the mean reference values. There were no significant differences of any of these glycolysis metabolites between the tAMD and PCV groups. Multivariate analysis revealed that none of the variables tested, including patient background factors (age, hypertension, diabetes, hyperlipidemia, cerebrovascular disease, alcohol, smoking, visual acuity, and AMD phenotype), were significantly associated with the lactate/pyruvate ratio.

Conclusion: A high lactate/pyruvate ratio is a well-known marker of mitochondrial impairment, and it indicates poor oxidative function in AMD. Our results suggest that increased lactate levels may be implicated in the pathogenesis of AMD.

No MeSH data available.


Related in: MedlinePlus