Limits...
Sol-gel synthesized zinc oxide nanorods and their structural and optical investigation for optoelectronic application.

Foo KL, Hashim U, Muhammad K, Voon CH - Nanoscale Res Lett (2014)

Bottom Line: Nanostructured zinc oxide (ZnO) nanorods (NRs) with hexagonal wurtzite structures were synthesized using an easy and low-cost bottom-up hydrothermal growth technique.In addition, the calculated results from the specific models of the refractive index are consistent with the experimental data.The ZnO NRs that grew from the 2-methoxyethanol seeded layer exhibited the smallest grain size (39.18 nm), largest diffracted intensities on the (002) plane, and highest bandgap (3.21 eV).

View Article: PubMed Central - HTML - PubMed

Affiliation: Nano Biochip Research Group, Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis 01000, Malaysia.

ABSTRACT
Nanostructured zinc oxide (ZnO) nanorods (NRs) with hexagonal wurtzite structures were synthesized using an easy and low-cost bottom-up hydrothermal growth technique. ZnO thin films were prepared with the use of four different solvents, namely, methanol, ethanol, isopropanol, and 2-methoxyethanol, and then used as seed layer templates for the subsequent growth of the ZnO NRs. The influences of the different solvents on the structural and optical properties were investigated through scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy, and photoluminescence. The obtained X-ray diffraction patterns showed that the synthesized ZnO NRs were single crystals and exhibited a preferred orientation along the (002) plane. In addition, the calculated results from the specific models of the refractive index are consistent with the experimental data. The ZnO NRs that grew from the 2-methoxyethanol seeded layer exhibited the smallest grain size (39.18 nm), largest diffracted intensities on the (002) plane, and highest bandgap (3.21 eV).

No MeSH data available.


Related in: MedlinePlus

FTIR absorption spectrum of ZnO NRs using various solvents.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4150024&req=5

Figure 5: FTIR absorption spectrum of ZnO NRs using various solvents.

Mentions: Figure 5 illustrates the FTIR spectra of the as-deposited four representative ZnO NRs prepared using four different solvents. Given that the wavelength of the fingerprint of the material ranged from 400 to 2,000 cm-1[38], the absorption region was fixed in this region. Overall, the spectrum showed two significant peaks and all of the ZnO NRs that were prepared using different solvents exhibited the same peaks. The ZnO NR morphologies that are grown via wet chemical synthesis prefer the c-axis growth [39]. Thus, the ZnO NRs usually had a reference spectrum at around 406 cm-1[40]. However, this absorption spectra is found at 410, 412, 409, and 410 cm-1 for the ZnO NRs prepared with the use of MeOH, EtOH, IPA, and 2-ME solvents, respectively, because these solvents caused a blueshift in the spectra of as-prepared ZnO NRs. The band from 540 to 560 cm-1 is also a stretching mode that is correlated with the ZnO [41,42].


Sol-gel synthesized zinc oxide nanorods and their structural and optical investigation for optoelectronic application.

Foo KL, Hashim U, Muhammad K, Voon CH - Nanoscale Res Lett (2014)

FTIR absorption spectrum of ZnO NRs using various solvents.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4150024&req=5

Figure 5: FTIR absorption spectrum of ZnO NRs using various solvents.
Mentions: Figure 5 illustrates the FTIR spectra of the as-deposited four representative ZnO NRs prepared using four different solvents. Given that the wavelength of the fingerprint of the material ranged from 400 to 2,000 cm-1[38], the absorption region was fixed in this region. Overall, the spectrum showed two significant peaks and all of the ZnO NRs that were prepared using different solvents exhibited the same peaks. The ZnO NR morphologies that are grown via wet chemical synthesis prefer the c-axis growth [39]. Thus, the ZnO NRs usually had a reference spectrum at around 406 cm-1[40]. However, this absorption spectra is found at 410, 412, 409, and 410 cm-1 for the ZnO NRs prepared with the use of MeOH, EtOH, IPA, and 2-ME solvents, respectively, because these solvents caused a blueshift in the spectra of as-prepared ZnO NRs. The band from 540 to 560 cm-1 is also a stretching mode that is correlated with the ZnO [41,42].

Bottom Line: Nanostructured zinc oxide (ZnO) nanorods (NRs) with hexagonal wurtzite structures were synthesized using an easy and low-cost bottom-up hydrothermal growth technique.In addition, the calculated results from the specific models of the refractive index are consistent with the experimental data.The ZnO NRs that grew from the 2-methoxyethanol seeded layer exhibited the smallest grain size (39.18 nm), largest diffracted intensities on the (002) plane, and highest bandgap (3.21 eV).

View Article: PubMed Central - HTML - PubMed

Affiliation: Nano Biochip Research Group, Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis 01000, Malaysia.

ABSTRACT
Nanostructured zinc oxide (ZnO) nanorods (NRs) with hexagonal wurtzite structures were synthesized using an easy and low-cost bottom-up hydrothermal growth technique. ZnO thin films were prepared with the use of four different solvents, namely, methanol, ethanol, isopropanol, and 2-methoxyethanol, and then used as seed layer templates for the subsequent growth of the ZnO NRs. The influences of the different solvents on the structural and optical properties were investigated through scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy, and photoluminescence. The obtained X-ray diffraction patterns showed that the synthesized ZnO NRs were single crystals and exhibited a preferred orientation along the (002) plane. In addition, the calculated results from the specific models of the refractive index are consistent with the experimental data. The ZnO NRs that grew from the 2-methoxyethanol seeded layer exhibited the smallest grain size (39.18 nm), largest diffracted intensities on the (002) plane, and highest bandgap (3.21 eV).

No MeSH data available.


Related in: MedlinePlus