Limits...
Sol-gel synthesized zinc oxide nanorods and their structural and optical investigation for optoelectronic application.

Foo KL, Hashim U, Muhammad K, Voon CH - Nanoscale Res Lett (2014)

Bottom Line: Nanostructured zinc oxide (ZnO) nanorods (NRs) with hexagonal wurtzite structures were synthesized using an easy and low-cost bottom-up hydrothermal growth technique.In addition, the calculated results from the specific models of the refractive index are consistent with the experimental data.The ZnO NRs that grew from the 2-methoxyethanol seeded layer exhibited the smallest grain size (39.18 nm), largest diffracted intensities on the (002) plane, and highest bandgap (3.21 eV).

View Article: PubMed Central - HTML - PubMed

Affiliation: Nano Biochip Research Group, Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis 01000, Malaysia.

ABSTRACT
Nanostructured zinc oxide (ZnO) nanorods (NRs) with hexagonal wurtzite structures were synthesized using an easy and low-cost bottom-up hydrothermal growth technique. ZnO thin films were prepared with the use of four different solvents, namely, methanol, ethanol, isopropanol, and 2-methoxyethanol, and then used as seed layer templates for the subsequent growth of the ZnO NRs. The influences of the different solvents on the structural and optical properties were investigated through scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy, and photoluminescence. The obtained X-ray diffraction patterns showed that the synthesized ZnO NRs were single crystals and exhibited a preferred orientation along the (002) plane. In addition, the calculated results from the specific models of the refractive index are consistent with the experimental data. The ZnO NRs that grew from the 2-methoxyethanol seeded layer exhibited the smallest grain size (39.18 nm), largest diffracted intensities on the (002) plane, and highest bandgap (3.21 eV).

No MeSH data available.


Related in: MedlinePlus

ZnO thin film preparation process flow.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4150024&req=5

Figure 1: ZnO thin film preparation process flow.

Mentions: In this experiment, a p-type Si (100) wafer was used as the substrate. Prior to the ZnO seed layer deposition process, the substrate underwent standard cleaning processes, in which it was ultrasonically cleaned with hydrochloric acid, acetone, and isopropanol. The native oxide on the substrate was removed using a buffered oxide etch solution, and then, the substrate was rinsed with deionized water (DIW). Subsequently, a conventional photoresist spin coater was used to deposit the aged ZnO solution on the cleaned substrates at 3,000 rpm for 20 s. A drying process was then performed on a hot plate at 150°C for 10 min. The same coating process was repeated thrice to obtain thicker and more homogenous ZnO films. The coated films were annealed at 500°C for 2 h to remove the organic component and solvent from the films. The annealing process was conducted in the conventional furnace. The preparation of the ZnO thin films is shown in Figure 1.


Sol-gel synthesized zinc oxide nanorods and their structural and optical investigation for optoelectronic application.

Foo KL, Hashim U, Muhammad K, Voon CH - Nanoscale Res Lett (2014)

ZnO thin film preparation process flow.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4150024&req=5

Figure 1: ZnO thin film preparation process flow.
Mentions: In this experiment, a p-type Si (100) wafer was used as the substrate. Prior to the ZnO seed layer deposition process, the substrate underwent standard cleaning processes, in which it was ultrasonically cleaned with hydrochloric acid, acetone, and isopropanol. The native oxide on the substrate was removed using a buffered oxide etch solution, and then, the substrate was rinsed with deionized water (DIW). Subsequently, a conventional photoresist spin coater was used to deposit the aged ZnO solution on the cleaned substrates at 3,000 rpm for 20 s. A drying process was then performed on a hot plate at 150°C for 10 min. The same coating process was repeated thrice to obtain thicker and more homogenous ZnO films. The coated films were annealed at 500°C for 2 h to remove the organic component and solvent from the films. The annealing process was conducted in the conventional furnace. The preparation of the ZnO thin films is shown in Figure 1.

Bottom Line: Nanostructured zinc oxide (ZnO) nanorods (NRs) with hexagonal wurtzite structures were synthesized using an easy and low-cost bottom-up hydrothermal growth technique.In addition, the calculated results from the specific models of the refractive index are consistent with the experimental data.The ZnO NRs that grew from the 2-methoxyethanol seeded layer exhibited the smallest grain size (39.18 nm), largest diffracted intensities on the (002) plane, and highest bandgap (3.21 eV).

View Article: PubMed Central - HTML - PubMed

Affiliation: Nano Biochip Research Group, Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis 01000, Malaysia.

ABSTRACT
Nanostructured zinc oxide (ZnO) nanorods (NRs) with hexagonal wurtzite structures were synthesized using an easy and low-cost bottom-up hydrothermal growth technique. ZnO thin films were prepared with the use of four different solvents, namely, methanol, ethanol, isopropanol, and 2-methoxyethanol, and then used as seed layer templates for the subsequent growth of the ZnO NRs. The influences of the different solvents on the structural and optical properties were investigated through scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy, and photoluminescence. The obtained X-ray diffraction patterns showed that the synthesized ZnO NRs were single crystals and exhibited a preferred orientation along the (002) plane. In addition, the calculated results from the specific models of the refractive index are consistent with the experimental data. The ZnO NRs that grew from the 2-methoxyethanol seeded layer exhibited the smallest grain size (39.18 nm), largest diffracted intensities on the (002) plane, and highest bandgap (3.21 eV).

No MeSH data available.


Related in: MedlinePlus